用户名: 密码: 验证码:
内蒙古典型草原与荒漠草原NDVI对气象因子的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NDVI of Typical Steppe and Desert Steppe in Inner Mongolia in Response to Meteorological Factors
  • 作者:岳喜元 ; 左小安 ; 常学礼 ; 徐翀 ; 吕朋 ; 张晶 ; 赵生龙 ; 程清平
  • 英文作者:Yue Xiyuan;Zuo Xiaoan;Chang Xueli;Xu Chong;Lv Peng;Zhang Jing;Zhao Shenglong;Cheng Qingping;Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;Shandong Provincial Key Laboratory of Eco, Enviroumontal Science for Yellow River Delta, Binzhou University;University of Chinese Academy of Sciences;School of Resources and Environmental Engineering, Ludong University;College of Pastoral Agriculture Science and Technology/State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University;Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences;
  • 关键词:NDVI ; 逐步回归分析 ; 气象因子 ; 典型草原 ; 荒漠草原
  • 英文关键词:NDVI;;stepwise regression analysis;;meteorological factors;;typical steppe;;desert steppe
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:中国科学院西北生态环境资源研究院乌拉特荒漠草原研究站;滨州学院山东省黄河海洲生态环境重点实验室;中国科学院大学;鲁东大学资源与环境工程学院;兰州大学草地农业科技学院/草地农业生态系统国家重点实验室;中国农业科学院农业资源与农业区划研究所呼伦贝尔草原生态系统国家野外科学观测研究站;
  • 出版日期:2019-01-16 13:47
  • 出版单位:中国沙漠
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41622103,41320104002);; 国家重点研发计划项目(2016YFC0500506)
  • 语种:中文;
  • 页:ZGSS201903004
  • 页数:9
  • CN:03
  • ISSN:62-1070/P
  • 分类号:27-35
摘要
分析了内蒙古典型草原与荒漠草原NDVI的变化,探讨了干旱对NDVI的影响,建立了NDVI与气象因子的回归模型。结果表明:2000—2016年内蒙古典型草原与荒漠草原NDVI呈现波动变化,变异较小。干旱对典型草原区的羊草(Leymus chinensis)群落与大针茅(Stipa grandis)群落NDVI影响显著(P<0.05);与正常年份相比,干旱导致羊草群落与大针茅群落NDVI降低约23%。5—8月降水量和干燥度指数影响内蒙古典型草原羊草群落与大针茅群落NDVI;荒漠草原区羊草+短花针茅(Stipa breviflora)群落与沙生针茅(Stipa plareosa)群落NDVI的主要影响因子分别为年均气温与5—8月平均气温;5—8月降水量和年均气温是影响典型草原和荒漠草原NDVI的重要因子。基于气象因子的NDVI回归模型能够较好地对区域NDVI进行估测。生长季降水是影响典型草原NDVI的关键因素,而气温显著影响荒漠草原NDVI。在未来气候变化的背景下,内蒙古典型草原NDVI对干旱的响应会更加敏感。
        The temporal variations of normalized difference vegetation index(NDVI) were analyzed using MODIS NDVI time series data in Inner-Mongolia typical steppe and desert steppe from 2000 to 2016. Effects of drought on NDVI for typical steppe and desert steppe were studied. The NDVI had a relatively small interannual variability, with C_V of 0.2 less for both typical steppe and desert steppe. The NDVI models of typical steppe and desert steppe were set up using stepwise regression combined with meteorological data, including annual rainfall, rainfall from May to August, mean annual temperature, mean temperature from May to August, annual aridity index and the aridity index from May to August were used in this study. The results showed that NDVI fluctuated in typical steppe and desert steppe from 2000 to 2016, and the typical steppe and desert steppe had low interannual coefficients of variation of NDVI. Compared to the normal year, drought significantly reduced NDVI by approximately 23% for Leymus chinensis community and Stipa grandis community of typical steppe, respectively. The main factors that affected NDVI for L. chinensis community and S. grandis community of typical steppe were mean precipitation from May to August and aridity index from May to August, respectively. NDVI for the L. chinensis+S. breviflora community and S. plareosa community of desert steppe were mainly affected by mean annual temperature and mean temperature from May to August, respectively. The key factors that affected NDVI were mean precipitation from May to August and mean annual temperature at the regional scale. We assessed the precision of NDVI models, and the high accuracy of NDVI models for typical steppe and desert steppe was observed. Precipitation during the growing season is the key factor that affects NDVI in typical steppe, and temperature significantly impacts on NDVI in desert steppe in Inner Mongolia. The results suggest that NDVI for typical steppe would be more susceptible to drought compared to desert steppe under future climate change scenarios.
引文
[1] Wang H,Liu G,Li Z,et al.Impacts of climate change on net primary productivity in arid and semiarid regions of China[J].Chinese Geographical Science,2015,26(1):35-47.
    [2] Mariotte P,Vandenberghe C,Hagedorn F,et al.Subordinate plant species enhance community insurance to drought in semi-natural grasslands[J].Journal of Ecology,2013,101:763-773.
    [3] 王松,耿元波,母悦.典型草原净初级生产力对气候变化响应的模拟[J].草业学报,2016,25(12):4-13.
    [4] 马明国,王建,王雪梅.基于遥感的植被年际变化及其与气候关系研究进展[J].遥感学报,2006,10(3):421-431.
    [5] Ji L,Peters A J.A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains[J].International Journal of Remote Sensing,2004,25(2):297-311.
    [6] Gao T,Xu B,Yang X,et al.Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia's grassland between 2001 and 2011[J].International Journal for Remote Sensing,2013,34(21):7796-7810.
    [7] Sun Y,Yang Y,Zhang Y,et al.Assessing vegetation dynamics and their relationships with climatic variability in northern China[J].Physics and Chemistry of the Earth Parts A/B/C,2015,87:79-86.
    [8] 蔡学彩,李镇清,陈佐忠,等.内蒙古草原大针茅群落地上生物量与降水量的关系[J].生态学报,2005,25(7):1657-1662.
    [9] Ni J.Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China[J].Plant Ecology,2004,174(2):217-234.
    [10] Ichii K,Kawabata A,Yamaguchi Y.Global correlation analysis for NDVI and climatic variables and NDVI trends:1982—1990[J].International Journal of Remote Sensing,2002,23(18):3873-3878.
    [11] 李素英,刘钟龄,常英,等.内蒙古典型草原初级生产力的补偿性与稳定性[J].干旱区资源与环境,2014,28(1):1-8.
    [12] Zhang B,Cao J,Bai Y,et al.Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow[J].Climatic Change,2013,118(2):197-212.
    [13] Fang J,Piao S,Zhou L,et al.Precipitation patterns alter growth of temperate vegetation[J].Geophysical Research Letters,2005,32(21):365-370.
    [14] 郭继凯,吴秀芹,董贵华,等.基于MODIS/NDVI的塔里木河流域植被覆盖变化驱动因素相对作用分析[J].干旱区研究,2017,34(3):621-629.
    [15] 王涛,李贝贝,裴春营.植被NDVI对城市扩展及气候变化的响应——以西安及其附近区域为例[J].干旱区地理,2017,40(2):388-396.
    [16] Kawamura K,Akiyama T,Yokota H,et al.Monitoring of forage conditions with MODIS imagery in the Xilingol steppe,Inner Mongolia[J].International Journal of Remote Sensing,2005,26(7):1423-1436.
    [17] 苏大学.1∶1000000中国草地资源图的编制与研究[J].自然资源学报,1996,11(1):75-83.
    [18] 宋丽弘,唐孝辉.内蒙古草原碳汇经济发展的基础与路径[J].中国草地学报,2012,34(2):1-7.
    [19] 王玉辉,周广胜.内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应[J].生态学报,2004,26(6):1140-1145.
    [20] 胡中民,樊江文,钟华平,等.中国温带草地地上生产力沿降水梯度的时空变异性[J].中国科学(D辑:地球科学),2006,36(12):1154-1162.
    [21] 梁艳,干珠扎布,张伟娜,等.气候变化对中国草原生态系统影响研究综述[J].中国农业科技导报,2014,16(2):1-8.
    [22] 陈佐忠.草原生态系统研究:第3集[M].北京:科学出版社,1988:13-21.
    [23] Li X,Hou X,Ren W,et al.Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland,China[J].Journal of Arid Land,2016,8(6):899-909.
    [24] 张瑞强,高天明,张景.围封对希拉穆仁草原植被和土壤种子库的影响[J].中国农业科技导报,2012,14(4):115-120.
    [25] 赵学勇,刘良旭,王玮,等.降水波动对荒漠草原生产力的影响[J].中国沙漠,2014,34(6):1486-1495.
    [26] Sarlak N,Mahmood Agha O M A.Spatial and temporal variations of aridity indices in Iraq[J].Theoretical and Applied Climatology,2017(3):1-11.
    [27] 王海梅,李政海,韩国栋,等.锡林郭勒盟气候干燥度的时空变化规律[J].生态学报,2010,30(23):6538-6545.
    [28] 郝虑远,孙睿,谢东辉,等.基于改进N-FINDR算法的华北平原冬小麦面积提取[J].农业工程学报,2013,29(15):153-161.
    [29] 丁明军,张镱锂,刘林山,等.1982—2009年青藏高原草地覆盖度时空变化特征[J].自然资源学报,2010,25(12):2114-2122.
    [30] 沈斌,房世波,余卫国.NDVI与气候因子关系在不同时间尺度上的结果差异[J].遥感学报,2016,20(3):481-490.
    [31] 张宏斌,唐华俊,杨桂霞,等.2000—2008年内蒙古草原MODIS NDVI时空特征变化[J].农业工程学报,2009,25(9):168-175.
    [32] Wang Y,Shen Y,Chen Y,et al.Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin,China[J].Ecohydrology,2013,6(6):927-936.
    [33] 张圣微,张睿,刘廷玺,等.锡林郭勒草原植被覆盖度时空动态与影响因素分析[J].农业机械学报,2017,48(3):253-260.
    [34] Gao J X,Chen Y M,Lu S H,et al.A ground spectral model for estimating biomass at the peak of the growing season in Hulunbeier grassland,Inner Mongolia,China[J].International Journal of Remote Sensing,2012,33(13):4029-4043.
    [35] 张圣微,赵鸿彬,张发,等.基于MODIS NDVI的锡林郭勒草原近10年的时空动态[J].草业科学,2014,31(8):1416-1423.
    [36] 白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647.
    [37] 谭丽萍,周广胜.内蒙古羊草群落、功能群、物种变化及其与气候的关系[J].生态学报,2013,33(2):650-658.
    [38] Jentsch A,Kreyling J,Elmer M,et al.Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J].Journal of Ecology,2011,99(3):689-702.
    [39] Pe?Uelas J,Prieto P,Beier C,et al.Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought:reductions in primary productivity in the heat and drought year of 2003[J].Global Change Biology,2007,13(12):2563-2581.
    [40] 张娜,梁一民.干旱气候对白羊草群落土壤水分和地上部生长的初步观察[J].生态学报,2000,20(6):964-970.
    [41] 王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报,2004,28(6):803-809.
    [42] 张清雨,吴绍洪,赵东升,等.内蒙古草地生长季植被变化对气候因子的响应[J].自然资源学报,2013,28(5):754-764.
    [43] 郭群,李胜功,胡中民,等.内蒙古温带草原典型草地生态系统生产力对水分在不同时间尺度上的响应[J].中国沙漠,2015,35(3):616-623.
    [44] 穆少杰,李建龙,周伟,等.2001—2010年内蒙古植被净初级生产力的时空格局及其与气候的关系[J].生态学报,2013,33(12):3752-3764.
    [45] 宋超,余琦殷,邢韶华,等.近三十余年河北大海陀自然保护区山地草甸植被(NDVI)变化及其对气候的响应[J].生态学报,2018,38(7):1-9.
    [46] 张仁平,冯琦胜,郭靖,等.2000—2012年中国北方草地NDVI和气候因子时空变化[J].中国沙漠,2015,35(5):1403-1412.
    [47] Wang J,Rich P M,Price K P.Temporal responses of NDVI to precipitation and temperature in the central Great Plains,USA[J].International Journal of Remote Sensing,2003,24(11):2345-2364.
    [48] Copeland S M,Harrison S P,Latimer A M,et al.Ecological effects of extreme drought on Californian herbaceous plant communities[J].Ecological Monographs,2016,86(3):295-311.
    [49] Miao L,Jiang C,Xue B,et al.Vegetation dynamics and factor analysis in arid and semi-arid Inner Mongolia[J].Environmental Earth Sciences,2015,73(5):2343-2352.
    [50] 朱雅娟,吴波,卢琦.干旱区对降水变化响应的研究进展[J].林业科学研究,2012,25(1):100-106.
    [51] 周梦甜,李军,朱康文.近15 a新疆不同类型植被NDVI时空动态变化及对气候变化的响应[J].干旱区地理,2015,38(4):779-787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700