用户名: 密码: 验证码:
Scalar quintuplet minimal dark matter with Yukawa interactions:perturbative up to the Planck scale
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scalar quintuplet minimal dark matter with Yukawa interactions:perturbative up to the Planck scale
  • 作者:骆柱 ; 蔡成丰 ; 康召丰 ; 余钊焕 ; 张宏浩
  • 英文作者:Zhu Luo;Cheng-feng Cai;Zhao-feng Kang;Zhao-huan Yu;Hong-hao Zhang;School of Physics, Sun Yat-Sen University;School of Physics, Huazhong University of Science and Technology;ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne;
  • 英文关键词:dark matter phenomenology;;renormalization group equations;;Landau pole;;vacuum stability
  • 中文刊名:KNWL
  • 英文刊名:中国物理C
  • 机构:School of Physics, Sun Yat-Sen University;School of Physics, Huazhong University of Science and Technology;ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Physics C
  • 年:2019
  • 期:v.43
  • 基金:Supported by the National Natural Science Foundation of China(NSFC)(11375277,11410301005,11647606,11005163,11775086,11875327,11805288);; the Fundamental Research Funds for the Central Universities,; the Natural Science Foundation of Guangdong Province(2016A030313313);; the Sun Yat-Sen University Science Foundation
  • 语种:英文;
  • 页:KNWL201902004
  • 页数:11
  • CN:02
  • ISSN:11-5641/O4
  • 分类号:20-30
摘要
We confront the perturbativity problem in the real scalar quintuplet minimal dark matter model. In the original model, the quintuplet quartic self-coupling inevitably hits a Landau pole at a scale ~10~(14) GeV, far below the Planck scale. In order to push up this Landau pole scale, we extend the model with a fermionic quintuplet and three fermionic singlets which couple to the scalar quintuplet via Yukawa interactions. Involving such Yukawa interactions at a scale ~10~(10) GeV can not only keep all couplings perturbative up to the Planck scale, but can also explain the smallness of neutrino masses via the type-I seesaw mechanism. Furthermore, we identify the parameter regions favored by the condition that perturbativity and vacuum stability are both maintained up to the Planck scale.
        We confront the perturbativity problem in the real scalar quintuplet minimal dark matter model. In the original model, the quintuplet quartic self-coupling inevitably hits a Landau pole at a scale ~10~(14) GeV, far below the Planck scale. In order to push up this Landau pole scale, we extend the model with a fermionic quintuplet and three fermionic singlets which couple to the scalar quintuplet via Yukawa interactions. Involving such Yukawa interactions at a scale ~10~(10) GeV can not only keep all couplings perturbative up to the Planck scale, but can also explain the smallness of neutrino masses via the type-I seesaw mechanism. Furthermore, we identify the parameter regions favored by the condition that perturbativity and vacuum stability are both maintained up to the Planck scale.
引文
1 G. Bertone, D. Hooper, and J. Silk, Phys. Rept., 405:279-390(2005)
    2 J. L. Feng, Ann. Rev. Astron. Astrophys., 48:495-545(2010)
    3 B.-L. Young, Front. Phys.(Beijing), 12(2):121201(2017)
    4 G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M.Pierre, S. Profumo, and F. S. Queiroz, Eur. Phys. J. C, 78:203(2018)
    5 M. Cirelli, N. Fornengo, and A. Strumia, Nucl. Phys. B, 753:178-194(2006)
    6 M. Cirelli, A. Strumia, and M. Tamburini, Nucl. Phys. B, 787:152-175(2007)
    7 M. Cirelli, R. Franceschini, and A. Strumia, Nucl. Phys. B, 800:204-220(2008)
    8 M. Cirelli and A. Strumia, New J. Phys., 11:105005(2009)
    9 T. Hambye, F. S. Ling, L. Lopez Honorez, and J. Rocher, JHEP,07:090(2009)
    10 M. R. Buckley, L. Randall, and B. Shuve, JHEP, 05:097(2011)
    11 Y. Cai, W. Chao, and S. Yang, JHEP, 12:043(2012)
    12 K. Earl, K. Hartling, H. E. Logan, and T. Pilkington, Phys. Rev.D,88:015002(2013)
    13 M. Cirelli, F. Sala, and M. Taoso, JHEP, 10:033(2014)
    14 B. Ostdiek, Phys. Rev. D, 92:055008(2015)
    15 M. Cirelli, T. Hambye, P. Panci, F. Sala, and M. Taoso, JCAP,1510(10):026(2015)
    16 C. Garcia-Cely, A. Ibarra, A. S. Lamperstorfer, and M. H. G.Tytgat, JCAP, 1510(10):058(2015)
    17 C. Cai, Z.-M. Huang, Z. Kang, Z.-H. Yu, and H.-H. Zhang, Phys.Rev. D, 92(11):115004(2015)
    18 E. Del Nobile, M. Nardecchia, and P. Panci, JCAP, 1604(04):048(2016)
    19 R. Mahbubani and L. Senatore, Phys. Rev. D, 73:043510(2006)
    20 F. D'Eramo, Phys. Rev. D, 76:083522(2007)
    21 R. Enberg, P. J. Fox, L. J. Hall, A. Y. Papaioannou, and M.Papucci, JHEP, 11:014(2007)
    22 T. Cohen, J. Kearney, A. Pierce, and D. Tucker-Smith, Phys.Rev.D, 85:075003(2012)
    23 O. Fischer and J. J. van der Bij, JCAP, 1401:032(2014)
    24 C. Cheung and D. Sanford, JCAP, 1402:011(2014)
    25 A. Dedes and D. Karamitros, Phys. Rev. D, 89(11):115002(2014)
    26 M. A. Fedderke, T. Lin, and L.-T. Wang, JHEP, 04:160(2016)
    27 L. Calibbi, A. Mariotti, and P. Tziveloglou, JHEP, 10:116(2015)
    28 A. Freitas, S. Westhoff, and J. Zupan, JHEP, 09:015(2015)
    29 C. E. Yaguna, Phys. Rev. D, 92(11):115002(2015)
    30 T. M. P. Tait and Z.-H. Yu, JHEP, 03:204(2016)
    31 S. Horiuchi, O. Macias, D. Restrepo, A. Rivera, O. Zapata, and H. Silverwood, JCAP, 1603(03):048(2016)
    32 S. Banerjee, S. Matsumoto, K. Mukaida, and Y.-L. S. Tsai, JHEP,11:070(2016)
    33 C. Cai, Z.-H. Yu, and H.-H. Zhang, Nucl. Phys. B, 921:181-210(2017)
    34 T. Abe, Phys. Lett. B, 771:125-130(2017)
    35 W.-B. Lu and P.-H. Gu, Nucl. Phys. B, 924:279-311(2017)
    36 C. Cai, Z.-H. Yu, and H.-H. Zhang, Nucl. Phys. B, 924:128-152(2017)
    37 N. Maru, T. Miyaji, N. Okada, and S. Okada, JHEP, 07:048(2017)
    38 X. Liu and L. Bian, Phys. Rev. D, 97:055028(2018)
    39 D. Egana-Ugrinovic, JHEP, 12:064(2017)
    40 Q.-F. Xiang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, Phys. Rev. D, 97:055004(2018)
    41 A. Voigt and S. Westhoff, JHEP, 11:009(2017)
    42 J.-W. Wang, X.-J. Bi, Q.-F. Xiang, P.-F. Yin, and Z.-H. Yu, Phys.Rev.D, 97:035021(2018)
    43 L. Di Luzio, R. Gr(o|¨)ber, J. F. Kamenik, and M. Nardecchia, JHEP,07:074(2015)
    44 T. Araki, C. Q. Geng, and K. I. Nagao, Phys. Rev. D, 83:075014(2011)
    45 S. Yaser Ayazi and S. M. Firouzabadi, JCAP, 1411(11):005(2014)
    46 N. Khan, Eur. Phys. J. C, 78:341(2018)
    47 Y. Hamada, K. Kawana, and K. Tsumura, Phys. Lett. B, 747:238-244(2015)
    48 R. Foot, H. Lew, X. G. He, and G. C. Joshi, Z. Phys. C, 44:441(1989)
    49 P. Minkowski, Phys. Lett. B, 67:421-428(1977)
    50 M. Gell-Mann, P. Ramond, and R. Slansky, Conf. Proc. C,790927:315-321(1979)
    51 T. Yanagida, Conf. Proc. C, 7902131:95-99(1979)
    52 R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett., 44:912(1980)
    53 K. Kannike, Eur. Phys. J. C, 72:2093(2012)
    54 K. Griest and D. Seckel, Phys. Rev. D, 43:3191-3203(1991)
    55 Planck Collaboration, P. A. R. Ade et al, Astron. Astrophys., 594:A13(2016)
    56 Fermi-LAT, MAGIC Collaboration, and M. L. Ahnen, et al,JCAP, 1602(02):039(2016)
    57 A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, JCAP,1705(05):006(2017)
    58 J. Hisano, K. Ishiwata, andN. Nagata, JHEP, 06:097(2015)
    59 PandaX-II Collaboration, X. Cui, et al, Phys. Rev. Lett., 119(18):181302(2017)
    60 XENON Collaboration, E. Aprile et al, Phys. Rev. Lett., 121:111302(2018)
    61 S. L. Adler, Phys. Rev., 177:2426-2438(1969)
    62 J. S. Bell and R. Jackiw, Nuovo Cim. A, 60:47-61(1969)
    63 E. Witten, Phys. Lett. B, 117:324-328(1982)
    64 O. Bar, Nucl. Phys. B, 650:522-542(2003)
    65 Particle Data Group Collaboration, C. Patrignani et al, Chin.Phys. C, 40(10):100001(2016)
    66 Particle Data Group Collaboration, J. Beringer et al, Phys. Rev.D.86:010001(2012)
    67 T. Hambye and K. Riesselmann, Phys. Rev. D, 55:7255-7262(1997)
    1)The term"real"means that the multiplet is self-conjugated. A electroweak multiplet with even n must be complex, and hence allows more interaction terms.
    1)This value may be slightly modified if the bound state formation effect is also considered[57].
    2)In order to give an accurate DM-nucleon cross section, a detailed calculation for loop diagrams is needed. But such a calculation would be beyond the scope of this paper. We will leave it to a further study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700