用户名: 密码: 验证码:
基于CFD的日光温室墙体蓄热层厚度的确定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of thickness of thermal storage layer of solar greenhouse wall based on CFD
  • 作者:许红军 ; 曹晏飞 ; 李彦荣 ; 阿拉帕提 ; 高杰 ; 蒋卫杰 ; 邹志荣
  • 英文作者:Xu Hongjun;Cao Yanfei;Li Yanrong;Alapati;Gao Jie;Jiang Weijie;Zou Zhirong;College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture;College of Forestry and Horticulture, Xinjiang Agricultural University;
  • 关键词:温室 ; 墙体 ; 计算机仿真 ; 流体力学 ; 蓄热层厚度 ; 传热性能
  • 英文关键词:greenhouse;;walls;;computer simulation;;fluid mechanics;;thickness of heat storage layer;;heat transfer performance
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:西北农林科技大学园艺学院农业部西北设施园艺工程重点实验室;新疆农业大学林学与园艺学院;
  • 出版日期:2019-02-23
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.356
  • 基金:新疆维吾尔自治区科技厅“科技援疆”项目(2016E02006);; 新疆维吾尔自治区园艺学重点学科基金(2016-10758-3);; 新疆维吾尔自治区自然科学基金(2016D01B028)
  • 语种:中文;
  • 页:NYGU201904022
  • 页数:10
  • CN:04
  • ISSN:11-2047/S
  • 分类号:183-192
摘要
日光温室墙体蓄放热能力的优劣取决于墙体蓄放热特性与蓄热层厚度,确定日光温室蓄热层厚度,对于推进日光温室墙体改进意义重大。该研究以温室内太阳辐射与室外气温作为输入条件,按照试验温室实际尺寸和相关关系进行参数化建模并模拟计算不同月份墙体蓄热层厚度。选择乌鲁木齐地区2018年1月-4月典型晴天进行测试,以温室地面、墙体表面的太阳辐射为输入条件,室外空气温度为边界条件,利用AutodeskCFD软件对晴天9:00至次日9:00的温室砖墙内部温度场进行了模拟,并通过对比墙体内部0、10、20、30、40、50 cm处温度测点的实测值与模拟值验证模拟结果的准确性。结果表明,温室墙体模拟结果与测试结果吻合度较高,1月9日、2月9日、3月6日各层平均误差均在1.5℃以下,4月6日实际值与模拟值误差较大,模拟值较实际值滞后,趋势随着深度与墙体温度的升高而更加明显。在温室墙体材料、结构、室内外的光温环境的共同影响下,温室墙体传热是一个复杂的非稳态过程。砖墙温室与土墙温室类似,墙体可划分为"保温层、稳定层、蓄热层",各层的厚度与墙体蓄热材料、保温材料的热物性有关。对墙体温度场、各层的温度衰减因子以及延迟时间分析可知,墙体厚度在0~30 cm范围内,墙体温度波动较为明显,墙体厚度大于30 cm时,温室墙体一天内温度波动较为平缓,波幅较小。随着气温回升,温室墙体内部温度整体提高,各层温度波动相差不大。在温室结构、保温性能不变的情况下,温室蓄热层厚度及波动情况受外界光温环境的综合影响较小。综上所述,采用CFD模拟温室墙体温度场的变化,并根据温室墙体温度场变化确定温室墙体蓄热层厚度是可行的,可靠性较高。该研究可为其他区域优选温室墙体结构,推进日光温室墙体改进提供依据和参考。
        The performance of greenhouse wall thermal storage and release capacity depends on the characteristics of the wall material and the thickness of the thermal storage layer. Determining the thickness of the solar greenhouse thermal storage layer is of great significance for promoting the improvement of the solar greenhouse wall. Parametric model according to the actual size and correlation of the test greenhouse was created based on the solar radiation and air temperature. Thickness of the wall thermal storage layer in different months was simulated in this study. In this paper, January 9 th, February 9 th, March 6 th, and April 6 th, 2018 in Urumqi was selected as typical sunny days. The solar radiation on the greenhouse floor and wall surface were used as the input condition, and the outdoor air temperature was the boundary conditions. The internal temperature field including each depth of 0, 10, 20, 30, 40, 50 cm of the greenhouse wall from 9:00 to next day 9:00 were simulated by using Autodesk CFD software. In order to ensure the consistency of CFD geometric models within one day and full release of heat from the greenhouse wall at night, no covering insulation quilt was carried out during the greenhouse test. The accuracy of simulated values was verified by comparing with the measured values. The results showed that the simulation results of the greenhouse wall were agreed well with the test results. The average error of each layer on January 9 th, February 9 th and March 6 th was below 1.5 °C. The error and simulated results lags between the test results and the simulated results on April 6 th is large. The trend becomes more pronounced as the depth and wall temperature increased. Under the combined influence of greenhouse wall materials, structures, and light and temperature environments, greenhouse wall heat transfer is a complex unsteady process. The brick wall greenhouse was similar to the soil wall greenhouse. The wall could be divided into "insulation layer, stable layer and heat storage layer". The thickness of each layer was related to the thermal properties of the wall heat storage material and insulation material. The wall temperature fluctuation was more obvious in the depth range of 0-30 cm according to the temperature field of the wall, the temperature attenuation factor of each layer and the delay time. When the wall depth was more than 30 cm, the greenhouse wall temperature fluctuations was relatively flat and the amplitude is small. As the temperature rose, the internal temperature of the greenhouse wall increased overall, and the temperature fluctuations of the various layers were small. The thickness and fluctuation of the greenhouse heat storage layer were less affected by the external light and temperature environment in the case of the greenhouse structure and insulation performance unchanged. In summary, it was feasible to simulate the change of greenhouse wall temperature field. It was reliable that the thickness of greenhouse wall thermal storage layer determined according to the temperature field variation of greenhouse wall. Solar greenhouse temperature environment dynamic simulation model based on greenhouse structure parameters and environmental parameters also could be established in other regions through the methods provided in this paper. It can provide basis and reference for the improvement and optimization of greenhouse wall structure.
引文
[1]陈青云.日光温室的实践与理论[J].上海交通大学学报:农业科学版,2008,26(5):343-350.Chen Qingyun.Progress of practice and theory in sunlight greenhouse[J].Journal of Shanghai Jiaotong University:Agricultural Science,2008,26(5):343-350.(in Chinese with English abstract)
    [2]鲍恩财,曹晏飞,邹志荣,等.节能日光温室蓄热技术研究进展[J].农业工程学报,2018,34(6):1-14.Bao Encai,Cao Yanfei,Zou Zhirong,et al.Research progress of thermal storage technology in energy-saving solar greenhouses[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),201834(6):1-14.(in Chinese with English abstract)
    [3]陈端生.中国节能型日光温室建筑与环境研究进展[J].农业工程学报,1994,10(1):123-129.Chen Duansheng.Advance of the research on the architecture and environment of the Chinese energy-saving sunlight greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),1994,10(1):123-129.(in Chinese with English abstract)
    [4]杨建军,邹志荣,张智,等.西北地区日光温室土墙厚度及其保温性的优化[J].农业工程学报,2009,25(8):180-185.Yang Jianjun,Zou Zhirong,Zhang Zhi,et al.Optimization of earth wall thickness and thermal insulation property of solar greenhouse in Northwest China[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(8):180-185.(in Chinese with English abstract)
    [5]李明,魏晓明,齐飞,等.日光温室墙体研究进展[J].新疆农业科学,2014,51(6):1162-1170,1176.Li Ming,Wei Xiaoming,Qi Fei,et al.Research progress in wall of solar greenhouse[J].Xinjiang Agricultural Science,2014,51(6):1162-1170,1176.(in Chinese with English abstract)
    [6]马月虹,李保明,张家发,等.北疆麦壳砂浆砌块填充蓄热材料复合墙体日光温室热性能[J].农业工程学报,2018,34(13):233-238.Ma Yuehong,Li Baoming,Zhang Jiafa,et al.Thermal performance of solar greenhouse with composite wall using wheat shell-mortar block filling with heat storage material in north Xinjiang[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(13):233-238.(in Chinese with English abstract)
    [7]鲍恩财,申婷婷,张勇,等.装配式主动蓄热墙体日光温室热性能分析[J].农业工程学报,2018,34(10):178-186.Bao Encai,Shen Tingting,Zhang Yong,et al.Thermal performance analysis of assembled active heat storage wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(10):178-186.(in Chinese with English abstract)
    [8]赵淑梅,庄云飞,郑可欣,等.日光温室空气对流蓄热中空墙体热性能试验[J].农业工程学报,2018,34(4):223-231.Zhao Shumei,Zhuang Yunfei,Zheng Kexin,et al.Thermal performance experiment on air convection heat storage wall with cavity in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(4):223-231.(in Chinese with English abstract)
    [9]张志录,王思倩,刘中华,等.下沉式日光温室土质墙体热特性的试验与分析[J].农业工程学报,2012,28(12):208-215.Zhang Zhilu,Wang Siqian,Liu Zhonghua,et al.Experiment and analysis on thermal characteristics of cob wall in sunken solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(12):208-215.(in Chinese with English abstract)
    [10]黄雪,王秀峰,魏珉,等.下挖式日光温室土墙温度和热流的变化规律[J].应用生态学报,2013,24(6):1669-1676.Huang Xue,Wang Xiufeng,Wei Min,et al.Variation patterns of soil wall temperature and heat flux in sunken solar greenhouse[J].Chinese Journal of Applied Ecology,2013,24(6):1669-1676.(in Chinese with English abstract)
    [11]彭东玲,张义,方慧,等.日光温室墙体一维导热的MATLAB模拟与热流分析[J].中国农业大学学报,2014,19(5):174-179.Peng Dongling,Zhang Yi,Fang Hui,et al.MATLABsimulation of one-dimensional heat transfer and heat flux analysis of northwall in Chinese solar greenhouse[J].Journal of China Agricultural University,2014,19(5):174-179.(in Chinese with English abstract)
    [12]李明,周长吉,魏晓明.日光温室墙体蓄热层厚度确定方法[J].农业工程学报,2015,31(2):177-183.Li Ming,Zhou Changji,Wei Xiaoming.Thickness determination of heat storage layer of wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(2):177-183.(in Chinese with English abstract)
    [13]白青,张亚红,孙利鑫.基于温波传递理论的日光温室土墙体蓄热层及墙体厚度分析[J].农业工程学报,2016,32(22):207-213.Bai Qing,Zhang Yahong,Sun Lixin.Analysis on heat storage layer and thickness of soil wall in solar greenhouse based on theory of temperature-wave transfer[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):207-213.(in Chinese with English abstract)
    [14]佟国红,李保明,Christopher D M,等.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007,23(7):178-185.Tong Guohong,Li Baoming,Christopher D M,et al.Preliminary study on temperature pattern in China solar greenhouse using computational fluid dynamics[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(7):178-185.(in Chinese with English abstract)
    [15]Tong Guohong,Christopher D M,Li Baoming,et al.Temperature variations inside Chinese solar greenhouses with external climatic conditions and enclosure materials[J].International Journal of Agricultural and Biological Engineering,2008,1(2):21-26.
    [16]Tong Guohong,Christopher D M,Li Baoming.Numerical modelling of temperature variations in a Chinese solar greenhouse[J].Computers and Electronics in Agriculture,2009,68(1):129-139.
    [17]佟国红,Christopher D M.墙体材料对日光温室温度环境影响的CFD模拟[J].农业工程学报,2009,25(3):153-157.Tong Guohong,Christopher D M.Simulation of temperature variations for various wall materials in Chinese solar greenhouses using computational fluid dynamics[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(3):153-157.(in Chinese with English abstract)
    [18]张林华,张峰,刘珊,等.下沉式土质墙体温室室内温度场的三维非稳态模拟[J].太阳能学报,2010,31(8):965-971.Zhang Linhua,Zhang Feng,Liu Shan,et a1.Three imensional non-steady-state simulation of sunken cob wall greenhouse indoor temperature field[J].Journal of Solar Energy,2010,31(8):965-971.(in Chinese with English abstract)
    [19]蒋国振,胡耀华,刘玉凤,等.基于CFD的下沉式日光温室保温性能分析[J].农业工程学报,2011,27(12):275-281.Jiang Guozhen,Hu Yaohua,Liu Yufeng,et al.Analysis on insulation performance of sunken solar greenhouse based on CFD[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(12):275-281.(in Chinese with English abstract)
    [20]张勇,高文波,邹志荣.主动蓄热后墙日光温室传热CFD模拟及性能试验[J].农业工程学报,2015,31(5):203-211.Zhang Yong,Gao Wenbo,Zou Zhirong.Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(5):203-211.(in Chinese with English abstract)
    [21]Zhang X,Wang H,Zou Z,et al.CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution[J].Biosystems Engineering,2016,142:12-26.
    [22]Jan Gie??ecki,Tomasz Jakubowski.The Simulation of Temperature Distribution in a Ground Heat Exchanger-GHE Using the Autodesk CFD Simulation Program[C]//Renewable Energy Sources:Engineering,Technology,Innovation,Berlin:Springer International Publishing,2018:333-343.
    [23]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [24]中华人民共和国住房和城乡建设部.民用建筑热工设计规范:GB 50176-2016[S].北京:中国建筑工业出版社,2016.
    [25]Mirsadeghi M,Cóstola D,Blocken B,et al.Review of external convective heat transfer coefficient models in building energy simulation programs:Implementation and uncertainty[J].Applied Thermal Engineering,2013,56(1/2):134-151.
    [26]弗兰克,P.英克鲁佩勒,大卫,等.传热和传质基本原理(原著第六版)[M].北京:化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700