用户名: 密码: 验证码:
铬原子感生荧光稳频频率稳定性的分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of frequency stabilization based on laser induced fluorescence in laser-focused atomic deposition with chromium
  • 作者:张彤 ; 殷聪 ; 赵跃进 ; 钱进 ; 王建波 ; 石春英
  • 英文作者:ZHANG Tong;YIN Cong;ZHAO Yuejin;QIAN Jin;WANG Jianbo;SHI chunying;Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology,School of Optics and Photonics, Beijing Institute of Technology;National Institute of Metrology, Division of Metrology in Length and Precision Engineering,Length Quantum Standards Lab;
  • 关键词:激光稳频 ; 感生荧光 ; 原子光刻
  • 英文关键词:laser frequency stabilization;;laser induced fluorescence;;atom lithography
  • 中文刊名:GXJS
  • 英文刊名:Optical Technique
  • 机构:北京理工大学光电学院精密光电测试仪器及技术北京市重点实验室;中国计量科学研究院长度所长度量子实验室;
  • 出版日期:2019-05-15
  • 出版单位:光学技术
  • 年:2019
  • 期:v.45;No.257
  • 语种:英文;
  • 页:GXJS201903001
  • 页数:6
  • CN:03
  • ISSN:11-1879/O4
  • 分类号:4-9
摘要
激光会聚铬原子沉积实验所需时间可长达几十分钟至几个小时,实验过程中要求激光频率的波动小于5MHz,感生荧光稳频技术能够解决原子沉积实验中激光频率漂移的问题。为了保证激光频率的长时间稳定性,对稳频系统的误差信号随激光功率及原子炉温度的变化情况进行了研究。结果显示,在光强为8mW,原子炉温度为1923K时,激光频率的长期漂移可抑制到最小,在200分钟内的频率波动仅有±0.6MHz。同时,重复实验的结果也表明稳频系统具有很好的稳定性,从而为原子沉积技术提供了保障,并提高了沉积实验的重复性。
        Laser stabilization based on laser induced fluorescence plays an important role in laser-focused atomic deposition. However there's seldom measurement of the stability of this system and the long-term frequency stability since the deposition process may last from tens of minutes to several hours. Measurements on the characters of laser stabilization based on Laser induced fluorescence(LIF) signals is proposed in this paper. Laser fluctuations for a range of laser intensities and thermal evaporation temperatures was measured with a calibrated commercial wavemeter. The optimal performance of this system happened when laser intensity was 8 mW and temperature was 1923 K. The frequency fluctuations in 200 min was suppressed to ±0.6 MHz near the atomic resonance transition. The stability of this system was also measured in multi-experiments, it turned out that this technique provides the condition for repeated atomic deposition experiments and the high success rate.
引文
[1] Harold J.Metcalf P v d S.Laser cooling and trapping[M].New York:Springer-Verlag New York,1999:87—97.
    [2] Timp G,Behringer R E,Tennant D M,et al.Using light as a lens for submicron,neutral-atom lithography[J].Physical Review Letters,1992,69(11):1027—1029.
    [3] McClelland J J,Scholten R E,Palm E C,et al.Laser-focused atomic deposition[J].Science,1993,262(5135):877—880.
    [4] Xiao D,Jie L,Li Z,et al.Natural square ruler at nanoscale [J].Applied Physics Express,2018,11(7):075201.
    [5] Zhang T,Yin C,Zhao Y,et al.Nanofabrication of millimeter-level nanostructure via laser-focused atomic deposition [J].Applied Physics Express,2018,11(9):092003.
    [6] McClelland J J,Anderson W R,Bradley C C,et al.Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition[J].Journal of Research of The National Institute of Standards and Technology,2003,108(2):99—113.
    [7] Jürgens D.Quantum effects in atomic nanofabrication using light forces[D].Konstanz:Universit?t Konstanz,2004.
    [8] Wieman C,H?nsch T W.Doppler-Free laser polarization spectroscopy[J].Physical Review Letters,1976,36(20):1170—1173.
    [9] Pearman C P,Adams C S,Cox S G,et al.Polarization spectroscopy of a closed atomic transition:applications to laser frequency locking[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2002,35(24):5141—5151.
    [10] Demtr?der W.Laser Spectroscopy[M].Berlin:Springer,Berlin,Heidelberg,2003:199—220.
    [11] Jitschin W.Locking the laser frequency to an atomic transition[J].Appl.Phys.B,1984,33(1):7—8.
    [12] Zi F,Wu X,Zhong W,et al.Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy[J].Applied Optics,2017,56(10):2649.
    [13] Fang Z ,Quan W ,Zhai Y .Off-resonance laser frequency stabilization method by Faraday rotation spectroscopy using acoustic-optic modulator[C]// Applied Optics and Photonics China:Fiber Optic Sensing and Optical Communications,Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,2017:10646.
    [14] Genko G,Lellinger T E,Thomas H,et al.Laser frequency stabilization by bichromatic saturation absorption spectroscopy[J].Journal of The Optical Society of America B,2017,34(9):2018—2030.
    [15]Meyer D H,Kunz P D,Solmeyer N.Nonlinear polarization spectroscopy of a Rydberg state for laser stabilization[J].Applied Optics,2017,56(3):B92—96.
    [16] Jurdík E.Laser manipulation of atoms and nanofabrication[D].Nijmegen:Katholieke Universiteit Nijmegen,2001.
    [17] Zhang T,Zhao Y and Yin C.Laser stabilization in atom lithography based on LIF signal from the chromium beam[C].//19th Annual Conference for Novel Optical Systems Design and Optimization.San Diego,CA,United states:SPIE,2016:99480S-1.
    [18] Zhang Baowu,Li Tongbao,Zhang Wentao,et al.Theoretic and experimental study on intensity of laser induced fluorescence derived from Cr atomic beam[J].Journal of Tongji University,2008,36(12):1730—1734.(in chinese)
    [19] Zhang Baowu,Li Tongbao,Zheng Chunlan,et al.Theoretic analysis on laser frequency stabilization derived from Cr atomic beam laser induced fluorescence [J].China Measurement Technology,2006,32(3):12—15.(in chinese)
    [20] Mollema A K,Wansbeek L W,Willmann L,et al.Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam[J].Physical Review A,2008,77(4):043409.
    [21] Scholten R E,Gupta R,McClelland J J,et al.Laser collimation of a chromium beam[J].Physical Review A:Atomic,Molecular,and Optical Physics,1997,55(2):1331—1338.
    [22] Jiao X,Yin C,Shi C,et al.Thermometry of Cr laser cooling via knife-edge[J].Chinese Journal of Lasers,2011,38(7):217—220.(in chinese)
    [23] Ma Yan X S,Zhang Wanjing.Collimation of atomic beam for the fabrication of nano-scale length standards[J].Infrared and Laser Engineering,2014,43(09):2929—2934.(in chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700