用户名: 密码: 验证码:
Nb-Si基复合材料中碳纳米管拔出机制的有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite Element Analysis of Pull-out Mechanism of Carbon Nanotubes in Nb-Si Matrix Composites
  • 作者:张忠敏 ; 龙文元 ; 宋凯
  • 英文作者:ZHANG Zhongmin;LONG Wenyuan;SONG Kai;CRRC Qingdao Sifang Co., Ltd.;College of Aeronautical Manufacturing Engineering,Nanchang Hongkong University;
  • 关键词:Nb-Si基复合材料 ; 碳纳米管 ; 界面强度 ; 拔出
  • 英文关键词:Nb-Si matrix composites;;carbon nanotubes;;interfacial strength;;pull-out
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:中车青岛四方机车车辆股份有限公司;南昌航空大学航空制造工程学院;
  • 出版日期:2019-03-05 10:25
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.506
  • 基金:国家自然科学基金资助项目(51271091,51865033);; 江西省自然科学基金项目(20161BAB206107)
  • 语种:中文;
  • 页:SJGY201904028
  • 页数:5
  • CN:04
  • ISSN:61-1133/TG
  • 分类号:119-123
摘要
基于均匀化理论,建立了碳纳米管增强Nb-Si基复合材料的代表体积元模型,采用ABAQUS有限元分析软件建立有限元模型,模拟研究了碳纳米管增强Nb-Si基复合材料界面上的应力分布及碳纳米管拔出机制,分析了碳纳米管的长度和界面强度对界面应力的传递和拔出载荷的影响规律。结果表明,在碳纳米管增强Nb-Si基复合材料受载失效过程中,碳纳米管的拔出可分为3个阶段即界面的完全粘接、开始脱粘和脱粘拔出等。碳纳米管的长度对界面应力的传递和拔出力均有一定的影响,而界面结合强度主要影响碳纳米管的拔出力,而且碳纳米管的长度和界面强度的增大都会使碳纳米管的拔出载荷增大。
        Based on homogenization theory, the representative volume element model of carbon nanotube reinforced Nb-Si matrix composites was established. ABAQUS finite element analysis software was used to establish the finite element model. The stress distribution and pull-out mechanism at the interface of Nb-Si matrix composites reinforced by carbon nanotubes were simulated. The influence of the length and interface strength of carbon nanotubes on the interfacial stress transfer and pull-out load was analyzed. The results show that, during the loading failure of carbon nanotube reinforced Nb-Si matrix composites, the pull-out of CNTs can be divided into three stages: the complete bonding of the interface, the beginning of debonding and the debonding and pull-out. The length of carbon nanotubes(CNTs) has a certain effect on the transfer of interfacial stress and pull-out force, and the interfacial bonding strength mainly affects the pull-out force of CNTs. The pull-out load increases with the increase of the length and interface strength of CNTs.
引文
[1]徐严谨,褚楚,侯红亮,等.超高温Nb-Si基复合材料研究现状[J].稀有金属材料与工程,2018,47(9):2909-2918.
    [2]Qian D,Dickey E C,Andrews R,et al.Load transfer and deformation mechanisms in carbon nanotube polystyrene composites[J].Applied Physics Letters,2000,76:2868-2870.
    [3]Ameri S,Sadeghian Z,Kazeminezhad I.Effect of CNTaddition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering[J].Intermetallics,2016,76:41-48.
    [4]龙文元,陈本隆,沈先君.SPS合成碳纳米管增强Nb/Nb5Si3复合材料的组织和性能[J].稀有金属材料与工程,2018,47(7):2240-2244.
    [5]Lau K.Interfacial bonding characteristics of nanotube/polymer composites[J].Chemical Physics Letters,2003,370(3):399-405.
    [6]Chen Y L,Liu B,He X Q,et al.Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites[J].Composites Science and Technology,2010,70(9):1360-1367.
    [7]Zalamea L,Kim H,Pipes R B.Stress transfer in multi-walled carbon nanotubes[J].Composites Science and Technology,2007,67(15):3425-3433.
    [8]王立峰,郭万林,胡海岩.范德华力对多壁纳米碳管力学性质的影响[J].固体力学学报,2004,25(3):269-274.
    [9]Ru C Q.Column buckling of multiwalled carbon nanotubes with interlayer radial displacements[J].Physical Review B,2000,62(24):16962-16967.
    [10]Xiao T,Liao K.A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites[J].Composites Part B:Engineering,2004,35(3):211-217.
    [11]Liu X,Yang Q S,He X Q,et al.Cohesive laws for van der waals interactions of super carbon nanotube/polymer composites[J].Mechanics Research Communications,2016,72:33-40.
    [12]Guo G D,Zhu Y.Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate[J].Journal of Applied Mechanics,2015,82(3):1005-1011.
    [13]高明,卞立春,潘静,等.碳纳米管复合材料的界面剪切应力研究[J].材料科学,2017,7(4):440-449.
    [14]刘贵立,谢萌.碳纳米管增强钛基复合材料的界面应力分布[J].沈阳工业大学学报,2015,37(6):684-689.
    [15]周丽军.碳纳米管复合材料界面应力传递及石墨烯弹性性能研究[D].天津:天津大学,2012.
    [16]Guan K,Jia L,Kong B,et al.Study of the fracture mechanism of Nb SS/Nb5Si3in situ composite:Based on a mechanical characterization of interfacial strength[J].Materials Science&Engineering A,2016,663:98-107.
    [17]Barber A H,Cohen S R,Wagner H D.Measurement of carbon nanotube-polymer interfacial strength[J].Applied Physics Letters,2003,82(23):4140-4142.
    [18]Gou J,Minaie B,Wang B,et al.Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J].Computational Materials Science,2004,31(3):225-236.
    [19]Xiao K Q,Zhang L C.The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix[J].Journal of Materials Science,2004,39(14):4481-4486.
    [20]Zhou L J,Kang Y L,Guo J G.Phenomenological model of interfacial stress transfer in carbon nanotube reinforced composites with van der waals effects[J].Polym.Compos.,2011,32(7):1069-1076.
    [21]Yang L,Tong L,He X.MD simulation of carbon nanotube pullout behavior and its use in determining mode I delamination toughness[J].Computational Materials Science,2012,55:356-364.
    [22]熊伟.碳纳米管增强Nb/Nb5Si3基复合材料的制备与性能研究[D].南昌:南昌航空大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700