用户名: 密码: 验证码:
316L奥氏体不锈钢表面低温气体渗碳层的热稳定性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel
  • 作者:孙宁 ; 姜勇 ; 陈金燕 ; 彭亚伟 ; 巩建鸣
  • 英文作者:SUN Ning;JIANG Yong;CHEN Jinyan;PENG Yawei;GONG Jianming;Key Lab of Design and Manufacture of Extreme Pressure Equipment,Jiangsu Province,School of Mechanical and Power Engineering,Nanjing Tech University;
  • 关键词:316L奥氏体不锈钢 ; 低温气体渗碳 ; 碳扩散 ; 时效 ; 热稳定性能
  • 英文关键词:316L austenitic stainless steel;;low temperature gaseous carburization;;carbon diffusion;;aging;;thermal stability
  • 中文刊名:GXGC
  • 英文刊名:Materials for Mechanical Engineering
  • 机构:南京工业大学机械与动力工程学院江苏省极端承压装备设计与制造重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:机械工程材料
  • 年:2019
  • 期:v.43;No.367
  • 基金:国家自然科学基金资助项目(51475224);; 江苏省高校自然科学研究重大项目(14KJA470002);; 江苏省普通高校学术学位研究生科研创新计划项目(KYZZ16_0234);; 江苏高校品牌专业建设工程项目(PPZY2015A022)
  • 语种:中文;
  • 页:GXGC201903002
  • 页数:7
  • CN:03
  • ISSN:31-1336/TB
  • 分类号:11-16+70
摘要
对表面低温气体渗碳强化处理的316L奥氏体不锈钢进行300~400℃保温150,1 500,3 000h时效处理,研究了时效温度及时间对表面渗碳层物相组成、厚度、纳米硬度和残余应力的影响,分析了其热稳定性能。结果表明:渗碳层在温度300~400℃的时效过程中无新型碳化物析出;在400℃时效时,碳原子向基体内部扩散,渗碳层厚度明显增加,当时效时间为3 000h时,渗碳层与基体的界面消失,表面纳米硬度降至基体的50%;当在300℃时效时,渗碳层厚度、碳含量以及纳米硬度均没有明显变化,此温度下服役时渗碳层较为稳定;经300~400℃时效处理后,渗碳层的表面残余压应力均下降,且时效温度越高、时效时间越长,残余压应力下降的幅度越大。
        316 Laustenitic stainless steel was surface enhanced by low temperature gaseous carburization,and then aged at 300-400℃ for 150,1 500,3 000 h,respectively.The effects of aging temperature and time on phase composition,thickness,nano-hardness and residual stress of the carburized surface layer were investigated.The thermal stability was analyzed.The results show that no new carbides precipitated in the carburized layer during aging at 300-400 ℃.When aged at 400 ℃,carbon atoms diffused into the substrate,leading to an obvious thickness increase of the carburized layer.The interface between the carburized layer and the substrate disappeared,and the surface nano-hardness decreased to 50%that of substrate after aging at 400 ℃for 3 000 h.When aged at300 ℃,the thickness,carbon content and nano-hardness of the carburized layer changed little;the carburized layer was relatively stable during working at 300℃.After aging at 300-400℃,the surface residual compressive stress of the carburized layer decreased,and the decreasing amplitude was larger at a higher aging temperature or for a longer aging time.
引文
[1]SOUZA R M,IGNAT M,PINEDO C E,et al.Structure and properties of low temperature plasma carburized austenitic stainless steels[J].Surface and Coatings Technology,2009,204(6/7):1102-1105.
    [2]梁磊,赵阳,刘世宏,等.凝汽器材料的耐磨蚀性能及电化学性能[J].腐蚀与防护,2015,36(8):717-720.
    [3]姜海一,张雅琴,贾国栋,等.奥氏体不锈钢制容器失效典型案例分析[C]//2006年全国失效分析与安全生产高级研讨会论文集.北京:中国机械工程学会,2006.
    [4]韩栋,刘道新,刘树涛.汽轮机低压转子2Cr13不锈钢叶片断裂分析[J].机械工程材料,2007,31(7):45-48.
    [5]陈星,姜涛,陶春虎,等.液压泵柱塞弹簧断裂失效分析[J].机械工程材料,2009,33(11):86-89.
    [6]KOLSTER B H.Development of a stainless and wear-resistant steel[J].Materialen,1987,8:1-12.
    [7]ERNST F,CAO Y,MICHAL G M.Carbides in lowtemperature-carburized stainless steels[J].Acta Materialia,2004,52(6):1469-1477.
    [8]LIU W J,BRIMACOMBE J K,HAWBOLT E B.Influence of composition on the diffusivity of carbon in steels:I.Nonalloyed austenite[J].Acta Metallurgica et Materialia,1991,39(10):2373-2380.
    [9]CAO Y,ERNST F,MICHAL G M.Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J].Acta Materialia,2003,51(14):4171-4181.
    [10]SATOMI N,KANAYAMA N,WATANABE Y,et al.Effects of heat treatment conditions on formation of expanded-austenite phase in austenitic stainless steels by combining active screen and DC plasma carburizing processes[J].Materials Transactions,2017,58(8):1181-1189.
    [11]CHRISTIANSEN T L,STHL K,BRINK B K,et al.On the carbon solubility in expanded austenite and formation of Hgg carbide in AISI 316stainless steel[J].Steel Research International,2016,87(11):1395-1405.
    [12]ICHII K,FUJIMURA K,TAKASE T.Structure of the ionnitrided layer of 18-8stainless steel[J].Technology Reports of Kansai University,1986,27:135-144.
    [13]LEWIS D B,LEYLAND A,STEVENSON P R,et al.Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels[J].Surface and Coatings Technology,1993,60(1/2/3):416-423.
    [14]O′DONNELL L J,MICHAL G M,ERNST F,et al.Wear maps for low temperature carburised 316Laustenitic stainless steel sliding against alumina[J].Surface Engineering,2010,26(4):284-292.
    [15]CESCHINI L,CHIAVARI C,LANZONI E,et al.Lowtemperature carburised AISI 316Laustenitic stainless steel:Wear and corrosion behaviour[J].Materials&Design,2012,38:154-160.
    [16]SUN Y,CHIN L Y.Residual stress evolution and relaxation in carbon S phase layers on AISI 316austenitic stainless steel[J].Surface Engineering,2002,18(6):443-446.
    [17]MICHAL G M,ERNST F,KAHN H,et al.Carbon supersaturation due to paraequilibrium carburization:Stainless steels with greatly improved mechanical properties[J].Acta Materialia,2006,54(6):1597-1606.
    [18]AGARWAL N,KAHN H,AVISHAI A,et al.Enhanced fatigue resistance in 316Laustenitic stainless steel due to lowtemperature paraequilibrium carburization[J].Acta Materialia,2007,55(16):5572-5580.
    [19]SUN Y.Corrosion behaviour of low temperature plasma carburised 316Lstainless steel in chloride containing solutions[J].Corrosion Science,2010,52(8):2661-2670.
    [20]TSUJIKAWA M,YOSHIDA D,YAMAUCHI N,et al.Surface material design of 316stainless steel by combination of low temperature carburizing and nitriding[J].Surface and Coatings Technology,2005,200(1):507-511.
    [21]MARTIN F J,LEMIEUX E,NEWBAUER T,et al.Localized corrosion resistance of LTCSS-carburized materials to seawater immersion[J].ECS Transactions,2007,3(31):613-621.
    [22]BUHAGIAR J,SPITERI A,SACCO M,et al.Augmentation of crevice corrosion resistance of medical grade316LVM stainless steel by plasma carburising[J].Corrosion Science,2012,59:169-178.
    [23]MARTINAVIˇCIUS A,ABRASONIS G,SCHEINOST A C,et al.Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J].Acta Materialia,2012,60(10):4065-4076.
    [24]LI X Y,THAIWATTHANA S,DONG H,et al.Thermal stability of carbon S phase in 316stainless steel[J].Surface Engineering,2002,18(6):448-451.
    [25]ROTUNDO F,CESCHINI L,MARTINI C,et al.High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316Laustenitic stainless steel[J].Surface and Coatings Technology,2014,258:772-781.
    [26]WANG J,LI Z,WANG D,et al.Thermal stability of lowtemperature carburized austenitic stainless steel[J].Acta Materialia,2017,128:235-240.
    [27]姜勇,孙宁,李洋,等.316L奥氏体不锈钢低温超饱和气体渗碳层热稳定性研究[J].热加工工艺,已接收.
    [28]荣冬松,姜勇,巩建鸣.奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J].金属学报,2015,51(12):1516-1522.
    [29]CHRISTIANSEN T,SOMERS M A J.Characterisation of low temperature surface hardened stainless steel[J].Struers Journal of Materialography,2006,9(9):2-17.
    [30]ERNST F,CAO Y,MICHAL G M,et al.Carbide precipitation in austenitic stainless steel carburized at low temperature[J].Acta Materialia,2007,55(6):1895-1906.
    [31]姜勇.奥氏体不锈钢低温气体渗碳表面强化性能及在新能源中应用的研究[D].南京:南京工业大学,2017.
    [32]THAIWATTHANA S,LI X Y,DONG H,et al.Comparison studies on properties of nitrogen and carbon Sphase on low temperature plasma alloyed AISI 316stainless steel[J].Surface Engineering,2002,18(6):433-437.
    [33]彭亚伟,巩建鸣,荣冬松,等.316L奥氏体不锈钢低温表面渗碳的数值分析[J].金属学报,2015,51(12):1500-1506.
    [34]BUCHHAGEN P,BELL T.Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels[J].Computational Materials Science,1996,7(1/2):228-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700