用户名: 密码: 验证码:
多场耦合多方向振动俘能器建模及响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Response Analysis of a Multi-field Coupled Multi-direction Vibration Energy Harvester
  • 作者:张旭辉 ; 吴中华 ; 赖正鹏 ; 谭厚志 ; 樊红卫
  • 英文作者:ZHANG Xuhui;WU Zhonghua;LAI Zhengpeng;TAN Houzhi;FAN Hongwei;School of Mechanical Engineering,Xi′an University of Science and Technology;
  • 关键词:低频低幅振动 ; 多场耦合模型 ; 振动俘能器 ; 分布式模型 ; 响应分析
  • 英文关键词:low-frequency and low-amplitude vibration;;multi-field coupled model;;vibration energy harvester;;distributed model;;response analysis
  • 中文刊名:ZDCS
  • 英文刊名:Journal of Vibration,Measurement & Diagnosis
  • 机构:西安科技大学机械工程学院;
  • 出版日期:2019-02-15
  • 出版单位:振动.测试与诊断
  • 年:2019
  • 期:v.39;No.189
  • 基金:国家自然科学基金资助项目(51605380);; 中国博士后科学基金资助项目(2015M582692,2016M602842);; 陕西省自然科学基础研究计划资助项目(2017JQ5105)
  • 语种:中文;
  • 页:ZDCS201901001
  • 页数:9
  • CN:01
  • ISSN:32-1361/V
  • 分类号:7-14+223
摘要
针对多方向振动俘能器对低频、低幅值激励的响应输出性能低等问题,在振动俘能结构中引入非线性磁吸力,提高俘能器的响应频带和能量转换效率。研究了非线性磁振子模型,建立了基于广义Hamilton变分原理的横、纵向振动系统机电耦合模型,对系统动力学方程进行无量纲化并数值求解。搭建了振动俘能器性能测试平台,开展了多场耦合振动俘能器频谱特性及响应输出的分析实验。结果表明,引入磁铁可显著提高系统能量转换效率,当磁铁间距15mm、激励幅值0.5m/s~2时,相比无磁力输入的情况,系统响应电压提高了6倍左右,谐振频率从18Hz降至9.5Hz左右,解决了压电俘能器频带窄、响应频率高及输出电压低等问题。
        Aiming at low response performance of vibration energy harvester to low-frequency and low-amplitude excitation,the nonlinear magnetic attraction is added to energy harvesting structure to improve frequency band and energy conversion efficiency.Nonlinear magnetic models are studied,the distributed electromechanical coupled models of transverse and longitudinal vibrations are established by using the generalized Hamilton variation principle,and system dynamic equation is addressed dimensionless and solved numerically.The experimental platform of vibration energy harvester is built,the spectral characteristics and response output is obtained.Results show that,when magnet spacing is 15 mm and excitation amplitude is 0.5 m/s~2,the energy conversion efficiency increases by about 6 times compared with that with no magnetic,and resonance frequency decreases from 18 Hz to 9.5 Hz,which solves problems of narrow band,high response frequency and the low output voltage of piezoelectric energy harvester.
引文
[1]Madhav C,Ali S F.Harvesting energy from vibration absorber under random excitations[J].IFAC-Papers on Line,2016,49(1):807-812.
    [2]Bobryk R V,Yurchenko D.On enhancement of vibration-based energy harvesting by a random parametric excitation[J].Journal of Sound and Vibration,2016,366:407-417.
    [3]王光庆,岳玉秋,展永政,等.宽频压电振动能量采集器的实验研究[J].振动、测试与诊断,2017,37(2):261-265.Wang Guangqing,Yue Yuqiu,Zhan Yongzhen,et al.Experimental researches for broadband piezoelectric vibration energy harvester[J].Journal of Vibration,Measurement&Diagnosis,2017,37(2):261-265.(in Chinese)
    [4]张旭辉,吴中华,邓鹏飞,等.自调谐全方向振动能量收集装置的设计及优化[J].压电与声光,2016(6):915-919.Zhang Xuhui,Wu Zhonghua,Deng Pengfei,et al.Design and optimization of self-tuning omnidirectional vibration energy harvester[J].Piezoelectrics&Acoustooptics,2016(6):915-919.(in Chinese)
    [5]Priya S,Inman D J.Energy harvesting technologies[M].New York:Springer,2009:5-8.
    [6]李海涛,秦卫阳.宽频随机激励下非线性压电能量采集器的相干共振[J].物理学报,2014,63(12):1-8.Li Haitao,Qin Weiyang.Coherent resonance of nonlinear piezoelectric energy collector with broadband random excitation[J].Acta Physica Sinica,2014,63(12):1-8.(in Chinese)
    [7]陈定方,沈威,明廷鑫,等.悬臂梁式压电能量收集器的建模与分析[J].南昌工程学院学报,2016,35(4):1-9.Chen Dingfang,Shen Wei,Ming Yanxing,et al.Modeling and analysis of cantilever piezoelectric energy harvester[J].Journal of Nanchang Institute of Technology,2016,35(4):1-9.(in Chinese)
    [8]Erturk A.Assumed-modes modeling of piezoelectric energy harvesters:Euler-Bernoulli,Rayleigh,and Timoshenko models with axial deformations[J].Computers&Structures,2012,106:214-227.
    [9]李叶,耿志远,李鹤,等.非线性振动系统非共振振动自同步特性[J].振动、测试与诊断,2016,36(2):295-300.Li Ye,Geng Zhiyuan,Li He,et al.Vibration self-synchronization features of a nonlinear vibrating system under non-sesonant conditions[J].Journal of Vibration,Measurement&Diagnosis,2016,36(2):295-300.(in Chinese)
    [10]Harne R L,Zhang C,Li B,et al.An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters[J].Journal of Sound and Vibration,2016,373:205-222.
    [11]王瑜.永磁装置中磁场力的计算[J].磁性材料及器件,2007,38(5):49-52.Wang Yu.Calculation of magnetic force of permanent magnet devices[J].Journal of Magnetic Materials and Devices,2007,38(5):49-52.(in Chinese)
    [12]Challa V R,Prasad M G,Shi Y,et al.A vibration energy harvesting device with bidirectional resonance frequency tunability[J].Smart Materials and Structures,2008,17(1):1-10.
    [13]单祖辉.材料力学Ⅱ[M].北京:高等教育出版社,2010:31-32.
    [14]李明明,黄春蓉,方勃,等.主被动混合压电网络悬臂梁结构的建模与比较[J].振动与冲击,2017(3):98-104.Li Mingming,Huang Chunrong,Fang Bo,et al.Modelling and comparison of cantilever beams withan active-passive hybrid piezoelectric network[J].Journal of Vibration and Shock,2017(3):98-104.(in Chinese)
    [15]谢官模.振动力学[M].北京:国防工业出版社,2011:185-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700