用户名: 密码: 验证码:
中国冻土地下水研究现状与进展综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of groundwater in permafrost regions of China: status and process
  • 作者:叶仁政 ; 常娟
  • 英文作者:YE Renzheng;CHANG Juan;College of Earth and Environment Science, Lanzhou University;
  • 关键词:研究现状与进展 ; 冻土地下水 ; 冻土融冻 ; 气候变化
  • 英文关键词:research status and process;;frozen soil groundwater;;frozen soil thawing-freezing;;climate change
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:兰州大学资源环境学院;
  • 出版日期:2019-02-25
  • 出版单位:冰川冻土
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目“青藏高原多年冻土区冻结层上地下水动态过程与变化机制研究”(41671015);; 国家自然科学重点基金项目“三江源区径流形成与变化机制及其冻土生态水文过程模拟”(91547203)资助
  • 语种:中文;
  • 页:BCDT201901020
  • 页数:14
  • CN:01
  • ISSN:62-1072/P
  • 分类号:189-202
摘要
冻土地下水系统不仅在寒区水文循环中扮演着重要的角色,同时也在寒区水文过程和地表过程及其科学研究中起到了集蓄、融冻和泄流等至关重要的作用。近几十年随着全球气候变暖及人类活动(寒区工程量)的增加,冻土退化趋势显著,这一过程改变了寒区的水文地质条件,导致地下水动态特征发生显著变化,从而引起一系列的生态环境变化。近些年,诸多学者通过构建水热耦合模型来研究冻土地下水的运动机理、分布状况和季节动态,促进了寒区地下水理论知识的发展,推动了寒区水文地质知识体系的进步。本文主要针对目前我国多年冻土区地下水的研究现状进行了分析、整理、归纳,为进一步研究气候变化下地下水系统的发展与演变,以及对生态环境的影响提供参考依据。
        The groundwater system in cold regions is a key factor in hydrological processes, which affect the collection, thawing-freezing and discharge in the land surface processes of cold regions. Permafrost, as the most widely distributed hydrological factor in the cold regions, like a natural water barrier, which controls the groundwater horizontal and vertical movement, recharges and discharges groundwater, and as a cryogenic source changes the thickness of gas zone, the physical properties of water movement and heat transfer. So the permafrost groundwater system has unique characteristics, which is different from the non-frozen soil areas. In recent decades, with the global warming and the increase of human activities(cold region engineering), the tendency of permafrost degeneration is remarkable, fundamentally changing the hydrogeological conditions in the cold regions and causing significant change in the dynamic characteristics of the groundwater. At the same time, the degradation of permafrost has also changed the storage and transportation conditions of surface water, groundwater and the water conservation function, resulting in a series of deterioration of ecological environment. Because of the hardship in the alpine area and data shortage, there are still many problems to be solved about the groundwater occurrence, distribution and migration in permafrost areas. During the last 10 years, in China, the development and use of coupled heat transport and groundwater models have focused in the groundwater migration and distribution in cold regions, isotope has also been used to analyze runoff components, deep progress has been made in the study of permafrost hydrogeology. In this paper, the current research status of groundwater in permafrost zone in China are summarized and classified, which will be helpful for further studying of cold area groundwater system evolution under climate change and clearing the impact of groundwater on the ecosystems.
引文
[1] Zhang Jianyun, Wang Guoqing, Yang Yang, et al. The possible impacts of climate change on water security in China[J]. Advances in Climate Change Research, 2008, 4(5): 290-295. [张建云, 王国庆, 杨扬, 等. 气候变化对中国水安全的影响研究[J]. 气候变化研究进展, 2008, 4(5): 290-295.]
    [2] Zhang Jianyun, He Ruimin, Qi Jing, et al. A new perspective on water issues in North China[J]. Advances in Water Science, 2013, 24(3): 303-310. [张建云, 贺瑞敏, 齐晶, 等. 关于中国北方水资源问题的再认识[J]. 水科学进展, 2013, 24(3): 303-310.]
    [3] Wright L J, Hoblyn R A, Green R E, et al. Importance of climatic and environmental change in the demography of a multi-brooded passerine, the woodlark Lullula arborea[J]. Journal of Animal Ecology, 2009, 78(6): 1191-1202.
    [4] Thorsteinsson T, Pundsack J. Arctic-HYDRA Consortium (2010): the arctic hydrological cycle monitoring, modelling and assessment programme[R]. Grafia Kommunikasjon A S, Oslo, Norway, 2010.
    [5] Wang Genxu, Liu Linan, Liu Guangsheng, et al. Impacts of grassland vegetation cover on the active-layer thermal regime, northeast Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2010, 21(4): 335-344.
    [6] Woo M. Permafrost hydrology[M]. Springer Science & Business Media, 2012.
    [7] Yang Yong, Chen Rensheng. Research review on hydrology in the permafrost and seasonal frozen regions[J]. Advances in Earth Science, 2011, 26(7): 711-723. [阳勇, 陈仁升. 冻土水文研究进展[J]. 地球科学进展, 2011, 26(7): 711-723.]
    [8] Liao Houchu, Zhang Bin, Xiao Difang. Frozen earth hydrology characteristic in the cold area and influence to groundwater supply from frozen earth[J]. Journal of Engineering of Heilongjiang, 2008, 35(3): 123-126. [廖厚初, 张滨, 肖迪芳. 寒区冻土水文特性及冻土对地下水补给的影响[J]. 黑龙江水专学报, 2008, 35(3): 123-126.]
    [9] Cheng Guodong, Jin Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 1-10. [程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11.]
    [10] Wang Shaoling, Bian Chunyu, Wang Jian. Hydrogeological characteristics of permafrost regions in the Qinghai-Tibet Plateau[J]. Qinghai Geology, 1994, 3(1): 40-47. [王绍令, 边纯玉, 王健. 青藏高原多年冻土区水文地质特征[J]. 青海地质, 1994, 3(1): 40-47.]
    [1[1] Kurylyk B L, MacQuarrie K T B, McKenzie J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools[J]. Earth-Science Reviews, 2014, 138: 313-334.
    [12] Quinton W L, Marsh P. Image analysis and water tracing methods for examining runoff pathways, soil properties and residence times in the continuous permafrost zone[J]. IAHS Publication, 1999: 257-264.
    [13] Chang Juan, Wang Genxu, Li Chunjie, et al. Seasonal dynamics of supra-permafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J]. Science in China: Series D Earth Sciences, 2015, 45(4): 481-493. [常娟, 王根绪, 李春杰, 等. 青藏高原连续多年冻土区的冻结层上水季节动态及其对活动层土壤冻融过程的响应特征[J]. 中国科学: D辑地球科学, 2015, 45(4): 481-493.]
    [14] Zhou Youwu, Qiu Guoqing, Guo Dongxin, et al. China frozen soil[M]. Beijing: Science Press, 2000: 128-136. [周幼吾, 邱国庆, 郭东信, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 128-136.]
    [15] Jin Huijun, Luo Dongliang, Wang Shaoling, et al. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau[J]. Sciences in Cold and Arid Regions, 2011, 3(4): 281-305.
    [16] Ma Lujuan. The spatiotemporal ariation of snow cover at the Qinghai-Tibet Plateau during recent 50 years and the relationship with Atmospheric Circulation[D]. Beijing: Chinese Academy of Meteorological Sciences, 2008. [马丽娟. 近50年青藏高原积雪的时空变化特征及其与大气环流因子的关系[D]. 北京: 中国气象科学研究院, 2008.]
    [17] Zang Haijia, Zhou Zijiang. Regional snow depth increment time series with its variation in the Qinghai-Tibet Plateau[J]. Meteorological Monthly, 2009, 35(6): 77-81. [臧海佳, 周自江. 青藏高原区域性积雪增量序列及其变化特征[J]. 气象, 2009, 35(6): 77-81.]
    [18] Cheng Guodong. Glaciology and geocryology of China in the past 40 years: progress and prospect[J]. Journal of Glaciology and Geocryology, 1998, 20(3): 213-226. [程国栋. 中国冰川学和冻土学研究40年进展和展望[J]. 冰川冻土, 1998, 20(3): 213-226.]
    [19] Ding Yongjian. Nearly 40 years to global glacier fluctuations in response to climate change[J]. Science in China: Series B Chemistry, 1995, 25(10): 1093-1098. [丁永建. 近40a来全球冰川波动对气候变化的反应[J]. 中国科学: B辑化学, 1995, 25(10): 1093-1098.]
    [20] Viktor V S, Dai Changlei, Zhang Yiding. Northern Eurasian groundwater in the upper frozen layer distribution rules[J]. Heilongjiang Water Resources, 2016, 2(3): 19-26. [维克多, 戴长雷, 张一丁. 亚欧大陆北部冻结层上地下水分布规律[J]. 黑龙江水利, 2016, 2(3): 19-26.]
    [2[1] Li Yingzhi, Guo Yanwei, Geng Xin, et al. Distribution characteristics of groundwater in non-freezing spring area on Tibetan Plateau[J]. Water Resources Protection, 2013, 29(3): 10-14. [李颖智, 郭彦威, 耿昕, 王秀明, 李胜涛. 青藏高原不冻泉地区地下水分布特征[J]. 水资源保护, 2013, 29(3): 10-14.]
    [22] Zhang Senqi, Cao Fuxiang, Li Xufeng, et al. Study on mechanism of water controlled by structures in Budong Spring region along Qinghai-Tibet Highway[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(Suppl 1): 253-258. [张森琦, 曹福祥, 李旭峰, 等. 青藏公路沿线不冻泉地区构造控水机理研究[J]. 吉林大学学报: 地球科学版, 2011, 41(增刊1): 253-258.]
    [23] Tan Liwei. Qinghai-Tibet project corridor Wudaoliang-84 Road Course hydrochemical characteristics of water[J]. Shanxi Architecture, 2016, 42(2): 52-53. [谭立渭. 青藏工程走廊五道梁-84道班段水化学特征分析[J]. 山西建筑, 2016, 42(2): 52-53.]
    [24] Zhang Mingli, Wen Zhi, Xue Ke. Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe[J]. Journal of Arid Land Resources and Environment, 2015, 29(9): 176-181. [张明礼, 温智, 薛珂. 北麓河多年冻土活动层水热迁移规律分析[J]. 干旱区资源与环境, 2015, 29(9): 176-181.]
    [25] Li Zhenping. Characteristic analysis of groundwater in Qinghai Tanggulashan area[D]. Beijing: China University of Geosciences (Beijing), 2013. [李振萍. 青海唐古拉山镇地区地下水特征分析[D]. 北京: 中国地质大学(北京), 2013.]
    [26] Tan Liwei, Li Fuxue, Li Zhenping, et al. Study on groundwater characteristics and development in permafrost region of Tuotuo River[J]. Yellow River, 2016, 38(5): 62-67. [谭立渭, 李富学, 李振萍, 等. 沱沱河多年冻土区地下水特征及开发利用研究[J]. 人民黄河, 2016, 38(5): 62-67.]
    [27] Xu Xiaoming, Wu Qingbai, Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8. [徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8.]
    [28] Wang Tao. 1:4 000 000 map of the glaciers, frozen ground and deserts in China[M]. Beijing: Sino Maps Press, 2006. [王涛. 1:4 000 000中国冰川冻土沙漠图[M]. 北京: 中国地图出版社, 2006.]
    [29] Yu Shaoshui, Pan Weidong, Shi Conghui, et al. Investigation and mechanism analysis of the major secondary harmful frozen-soil phenomena along Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 1082-1085. [余绍水, 潘卫东, 史聪慧, 等. 青藏铁路沿线主要次生不良冻土现象的调查和机理分析[J]. 岩石力学与工程学报, 2005, 24(6): 1082-1085.]
    [30] Liu Houjian, Liu Dongxing, Yu Qihao, et al. Study on permafrost engineering problems and engineering countermeasure of transmission line[J]. Geotechnical Investigation & Surveying, 2009, (4): 32-36. [刘厚健, 刘东幸, 俞祁浩, 等.高海拔输电线路的冻土工程问题及对策研究[J].工程勘察, 2009, (4): 32-36.]
    [3[1] Pan Weidong, Zhu Yuanlin, Wu Yaping, et al. The effect of harmful features related to frozen ground on railway construction in permafrost area of Qinghai-Tibet Plateau[J]. Journal of Lanzhou University (Natural Sciences), 2002, 38(1): 127-131. [潘卫东, 朱元林, 吴亚平, 等. 青藏高原多年冻土区不良地质现象对铁路建设的影响[J]. 兰州大学学报(自然科学版), 2002, 38(1): 127-131.]
    [32] Niu Fujun, Lin Zhanju, Liu Hua, et al. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3): 222-233.
    [33] Jin Huijun, Wang Shaoling, L Lanzhi. Zonation and assessment of engineering geology for frozen-ground environments and conditions along the proposed China-Russia Crude Oil Pipeline route[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 102-107. [金会军, 王绍令, 吕兰芝, 等. 中俄管道(漠河-乌尔其段)多年冻土环境工程地质区划和评价[J]. 水文地质工程地质, 2009, 36(4): 102-107.]
    [34] Lin Zhanju, Niu Fujun, Xu Zhiying, et al. Changes in permafrost environments caused by the Qinghai-Tibet Highway construction and maintenance[J]. Central South University of Technology Journal, 2011, 33(4): 566-573. [林战举, 牛富俊, 徐志英, 等. 青藏铁路沿线热融沟发展特征及其对路基热稳定性的影响[J]. 岩土工程学报, 2011, 33(4): 566-573.]
    [35] Lin Zhanju, Luo Jing, Niu Fujun. Development of a thermokarst lake and its thermal effects on permafrost over nearly 10 yr in the Beiluhe Basin, Qinghai-Tibet Plateau[J]. Geosphere, 2016, 12(2): 632-643.
    [36] Luo Jing, Niu Fujun, Lin Zhanju, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai-Tibet Plateau[J]. Science Bulletin, 2015, 60(5): 556-564. [罗京, 牛富俊, 林战举, 等. 1969~2010年青藏高原北麓河盆地热喀斯特湖塘演化过程[J]. 科学通报, 2015, 60(9): 871-871.]
    [37] Yoshikawa K, Hinzman L D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost and Periglacial Processes, 2003, 14(2): 151-160.
    [38] Cui Wei, Wu Qingbai, Liu Yongzhi. The thermal effect of a thermokarst lake on permafrost[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 755-760. [崔巍, 吴青柏, 刘永智. 热融湖塘对多年冻土的热影响[J]. 冰川冻土, 2010, 32(4): 755-760.]
    [39] Lin Zhanju, Niu Fujun, Fang Jianhong, et al. Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau[J]. Geomorphology, 2017, 276: 16-26.
    [40] Lin Fengtong. Selection and evaluation of water supply in permafrost regions of Great Khingan Mountains[J]. Journal of Glaciology and Geocryology, 1980, 12(1): 32-36. [林风桐. 大小兴安岭多年冻土地区供水水源选择与评价[J]. 冰川冻土, 1980, 12(1): 32-36.]
    [4[1] Yang Zhenniang. Chinese cold area hydrology[M]. Beijing: Science Press, 2000: 91. [杨针娘. 中国寒区水文[M]. 北京: 科学出版社, 2000: 91.]
    [42] Liu Guangsheng. Study on balance process of energy and water in permafrost regions of Yangtze River[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2012. [刘光生. 长江源多年冻土区流域能量与水量平衡过程研究[D]. 北京: 中国科学院研究生院, 2012.]
    [43] Liu Dongying, Shen Yanzhou, Wang Zhengxiang. Analysis of water resources characteristics in Nujiang River basin[J]. Yangtze River, 2008, 39(17): 64-66. [刘冬英, 沈燕舟, 王政祥. 怒江流域水资源特性分析[J]. 人民长江, 2008, 39(17): 64-66.]
    [44] Li Zongxing, Qi Feng, Wang Q.J., et al. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China[J]. Global and Planetary Change, 2016, 136: 41-51.
    [45] Li Zongxing, Qi Feng, Wang Qingjuan, et al. Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains[J]. Global and Planetary Change, 2014, 122: 345-361.
    [46] Xing Bing, Liu Zhongfang, Liu Guodong, et al. Determination of runoff components using path analysis and isotopic measurements in a glacier-covered alpine catchment (upper Hailuogou Valley) in southwest China[J]. Hydrological Processes, 2015, 29(14): 3065-3073.
    [47] Zhang Senqi, Wang Yonggui, Zhao Yongzhen, et al. Permafrost degradation and its environmental sequent in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2004, 26(1): 1-6. [张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004, 26(1): 1-6.]
    [48] Chang Qixin, Sun Ziyong, Ma Rui, et al. A review of groundwater flow and its interaction with surface water in permafrost region[J]. Advances in Science and Technology of Water Resources, 2016, 36(5): 87-94. [常启昕, 孙自永, 马瑞, 等. 冻土区地下水流过程及其与地表水转化关系研究进展[J]. 水利水电科技进展, 2016, 36(5): 87-94.]
    [49] Wu Jinkui, Ding Yongjian, Wang Genxu, et al. Advance on application of isotopic techniques in water sciences in cold and arid regions[J]. Journal of Glaciology and Geocryology, 2004, 26(4): 509-516. [吴锦奎, 丁永建, 王根绪, 等. 同位素技术在寒旱区水科学中的应用进展[J]. 冰川冻土, 2004, 26(4): 509-516.]
    [50] Carey S K, Boucher J L, Duarte C M. Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada)[J]. Hydrogeology Journal, 2013, 21(1): 67-77.
    [5[1] Chen Rensheng, L Shihua, Kang Ersi, et al. A distributed water heat coupled (DWHC) model for mountainous watershed of an inland river basin (Ⅰ): model structure and equations[J]. Advances in Earth Science, 2006, 21(8): 806-818. [陈仁升, 吕世华, 康尔泗, 等. 内陆河高寒山区流域分布式水热耦合模型(Ⅰ): 模型原理[J]. 地球科学进展, 2006, 21(8): 806-818.]
    [52] Zhou Jian, Pomeroy J W, Zhang Wei, et al. Simulating cold regions hydrological processes using a modular model in the west of China[J]. Journal of Hydrology, 2014, 509(4):13-24.
    [53] Wang Shaoling, Liang Zhixiang , Liu Jingshou, et al. Study on tritium isotope of surface water and groundwater in eastern Qinghai-Tibet Plateau[J]. Environmental Science, 1990, 11(1): 24-27. [王绍令, 梁志祥, 刘景寿, 等. 青藏高原东部地表水、 地下水的氚同位素研究[J]. 环境科学, 1990, 11(1): 24-27.]
    [54] Wang Shaoling. Discussion on intrapermafrost water[J]. Hydrogeology and Engineering Geology, 1990, 17(1): 46-47. [王绍令. 试论冻结层内水[J]. 水文地质工程地质, 1990, 17(1): 46-47.]
    [55] Zhu Meizhuang, Wang Genxu, Xiao Yao, et al. A study on the changes of soil water infiltration in alpine meadow of permafrost regions in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1316-1325. [朱美壮, 王根绪, 肖瑶, 等. 青藏高原多年冻土区高寒草甸土壤水分入渗随冻融和海拔的变化[J]. 冰川冻土, 2017, 39(6): 1316-1325.]
    [56] Viktor V S, Dai Changlei, Wang Min, et al. Hydrogeochemical characteristics of the frozen groundwater[J]. Heilongjiang Water Resources, 2016, 2(9): 20-27. [维克多, 戴长雷, 王敏, 等. 冻结层上水的水文地球化学特征[J]. 黑龙江水利, 2016, 2(9): 20-27.]
    [57] McKenzie J M, Voss C I. Permafrost thaw in a nested groundwater-flow system[J]. Hydrogeology Journal, 2013, 21(1): 299-316.
    [58] Yang Zhen, Wen Zhi, Niu Fujun, et al. Research on thermokarst lakes in permafrost region: present state and prospect[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1519-1526. [杨振, 温智, 牛富俊, 等. 多年冻土区热融湖研究现状与展望[J]. 冰川冻土, 2013, 35(6): 1519-1526.]
    [59] Scheidegger J M, Bense V F. Impacts of glacially recharged groundwater flow systems on talik evolution[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(4): 758-778.
    [60] Burn C R. Lake-bottom thermal regimes, western Arctic coast, Canada[J]. Permafrost and Periglacial Processes, 2005, 16(4): 355-367.
    [6[1] Wang Yibo, Gao Zeyong, Wen Jing, et al. Effect of a thermokarst lake on soil physical properties and infiltration processes in the permafrost region of the Qinghai-Tibet Plateau, China[J]. Science in China: Series D Earth Sciences, 2014, 57(10): 2357-2365.
    [62] Lin Zhanju, Niu Fujun, Xu Zhiying, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(4): 315-324.
    [63] Ling Feng, Wu Qingbai, Zhang Tingjun, et al. Modelling open-talik formation and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2012, 23(4): 312-321.
    [64] Zhu Yuanlin, Chen Guodong. The research status and development trends of permafrost research from the Sixth International Conference on Permafrost (VIICOP)[J]. Bulletin of Chinese Academy of Sciences, 1994, 1: 84-87. [朱元林, 程国栋. 从第六届国际冻土学大会 (VIICOP) 看冻土学研究现状及发展趋势[J]. 中国科学院院刊, 1994, 1: 84-87.]
    [65] Haldorsen S, Heim M, Dale B, et al. Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard[J]. Quaternary research, 2010, 73(2): 393-402.
    [66] Zhao Qiudong, Liu Zhaoyang, Ye Bin, et al. A snowmelt runoff forecasting model coupling WRF and DHSVM[J]. Hydrology and Earth System Sciences, 2009, 13(10): 1897-1906.
    [67] Cheng Guodong, Jin Huijun. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013, 21(1): 5-23.
    [68] Feng Yuqing, Liang Sihai, Wu Qingbai, et al. Vegetation responses to permafrost degradation in the Qinghai-Tibetan Plateau[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(3): 311-316. [冯雨晴, 梁四海, 吴青柏, 等. 冻土退化过程中植被覆盖度的变化研究[J]. 北京师范大学学报: 自然科学版, 2016, 52(3): 311-316.]
    [69] Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Relationship between soil properties in permafrost active layer and surface vegetation in Xidatan on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 565-573. [岳广阳, 赵林, 赵拥华, 等. 青藏高原西大滩多年冻土活动层土壤性状与地表植被的关系[J]. 冰川冻土, 2013, 35(3): 565-573.]
    [70] Yao Tandong, Qin Dahe, Shen Yongping, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 179-186. [姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013, 35(3): 179-186.]
    [7[1] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Relationship between permafrost and vegetation in frozen soil region of Qinghai-Tibet Plateau and its impact on alpine ecosystems[J]. Science in China: Series D Earth Sciences, 2006, 36(8): 743-754. [王根绪, 李元寿, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学: D辑地球科学, 2006, 36(8): 743-754.]
    [72] Luo Dongliang, Jin Huijun, Lin Lin, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 538-546. [罗栋梁, 金会军, 林琳, 等. 青海高原中, 东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34(3): 538546.]
    [73] Jin Huijun, Li Shuxun, Cheng Guodong, et al. Permafrost and climatic change in China[J]. Global and Planetary Change, 2000, 26(4): 387-404.
    [74] Harris C, Arenson L U, Christiansen H H, et al. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses[J]. Earth-Science Reviews, 2009, 92(3): 117-171.
    [75] He Ruixia, Jin Huijun, Lü Lanzhi, et al. Recent changes of permafrost and cold regions environments in the northern part of northeastern China[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 525-531. [何瑞霞, 金会军, 吕兰芝, 等. 东北北部冻土退化与寒区生态环境变化[J]. 冰川冻土, 2009, 31(3): 525-531.]
    [76] Wellman T P, Voss C I, Walvoord M A. Impacts of climate, lake size, and supra-and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)[J]. Hydrogeology Journal, 2013, 21(1): 281-298.
    [77] Wang Shengting, Sheng Yu, Cao Wei, et al. Estimation of permafrost ice reserves in the source area of the Yellow River using landform classification[J]. Advances in Water Science, 2017, 28(6): 801-810. [王生廷, 盛煜, 曹伟, 等. 基于地貌分类的黄河源区多年冻土层地下冰储量估算[J]. 水科学进展, 2017, 28(6): 801-810.]
    [78] Xiang Longwei, Wang Hansheng, Steffen H, et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth & Planetary Science Letters, 2016, 449: 228-239.
    [79] Zhang Guoqing, Yao Tandong, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau′s endorheic basin[J]. Geophysical Research Letters, 2017, 44: 5550-5560.
    [80] Niu Li, Ye Baisheng, Li Jing, et al. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science in China: Series D Earth Science, 2011, 54(4): 615-624. [牛丽, 叶柏生, 李静, 等. 中国西北地区典型流域冻土退化对水文过程的影响[J]. 中国科学: D辑地球科学, 2011, 41(1): 85-92.]
    [8[1] Ge Shenmin, McKenzie J, Voss C, et al. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation[J]. Geophysical Research Letters, 2011, 38(14): 1-6.
    [82] Wang Yibo, Wang Genxu, Wu Qingbai, et al. The impact of vegetation degeneration on hydrology features of alpine soil[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 989-998. [王一博, 王根绪, 吴青柏, 等. 植被退化对高寒土壤水文特征的影响[J]. 冰川冻土, 2010, 32(5): 989-998.]
    [83] Gao Zeyong, Wang Yibo, Liu Guohua. Effect of thermokarst lake on soil saturated hydraulic conductivity and analysis of its influenced factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 109-117. [高泽永, 王一博, 刘国华. 热融湖塘对青藏高原土壤饱和导水率的影响及因素分析[J]. 农业工程学报, 2014, 30(20): 109-117.]
    [84] Gong Tongliang, Liu Changming, Liu Jingshi. Hydrological response of Lhasa River to climate change and permafrost degradation in Xizang[J]. Acta Geographica Sinica, 2006, 61(5): 519-526. [巩同梁, 刘昌明, 刘景时. 拉萨河冬季径流对气候变暖和冻土退化的响应[J]. 地理学报, 2006, 61: 519–526]
    [85] Liu Jingshi, Wei Wenshou, Huang Yuying, et al. Hydrological response of winter streamflow to climate change and permafrost degradation in Manas watershed, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 656-662. [刘景时, 魏文寿, 黄玉英, 等. 天山玛纳斯河冬季径流对暖冬和冻土退化的响应[J]. 冰川冻土, 2006, 28(5): 656-662.]
    [86] Liu Jingshi, Hayakawab N, Lu Mingjiao, et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China[J]. Cold Regions Science Technology, 2003, 37: 15-24.
    [87] Lu Yinhao, Ye Baisheng, Li Chong. Changes of runoff of the Hailar River basin in the southern margin of permafrost zone, Northeast China during 1958-2008[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 394-402. [陆胤昊, 叶柏生, 李翀. 近50 a来我国东北多年冻土区南缘海拉尔河流域径流变化特征分析[J]. 冰川冻土, 2014, 36(2): 394-402.]
    [88] Ye Baisheng, Ding Yongjian, Jiao Keqin, et al. The resoponse of river discharge to climate warming in cold region over China[J]. Quaternary Sciences, 2012, 32(1): 103-110. [叶柏生, 丁永建, 焦克勤, 等. 我国寒区径流对气候变暖的响应[J]. 第四纪研究, 2012, 32(1): 103-110.]
    [89] Zhou Jingwu, Ablimiti Ablikim, Mao Weiyi, et al. The responses of the runoff processes to climate change in the Qingshuihe River watershed on the southern slope of Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 685-690. [周京武, 阿不力米提·阿不力克木, 毛炜峄, 等. 天山南坡清水河流域径流过程对气候变化的响应[J]. 冰川冻土, 2014, 36(3): 685-690.]
    [90] Wang Baolai, French H M. Climate controls and high‐altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China[J]. Permafrost and Periglacial Processes, 1994, 5(2): 87-100.
    [9[1] Liang Sihai, Wan Li, Li Zhiming, et al. The effect of permafrost on alpine vegetation in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 45-52. [梁四海, 万力, 李志明, 等. 黄河源区冻土对植被的影响[J]. 冰川冻土, 2007, 29(1): 45-52.]
    [92] Peng Xuanming, Wu Qingbo, Tian Mingzhong. The effect of groundwater table lowering on ecological environment in the headwaters of the Yellow River[J]. Journal of Glaciology and Geocryology, 2003, 25(6): 667-671. [彭轩明, 吴青柏, 田明中. 黄河源区地下水位下降对生态环境的影响[J]. 冰川冻土, 2003, 25(6): 667-671.]
    [93] Zhou Youwu, Guo Dongxin. Principal characteristics of permafrost in China[J]. Journal of Glaciology and Geocryology, 1982, 4(1): 1-19. [周幼吾, 郭东信. 我国多年冻土的主要特征[J]. 冰川冻土, 1982, 4(1): 1-19.]
    [94] Han Xuchang. Permafrost and hydrogeological character in Wuerqihan[C]//Proceedings of the Symposium on Glaciology and Cryopedology held by Geographical Society of China (Cryopedology). Beijing: Science Press, 1982: 27-30. [韩旭昌. 乌尔其汗多年冻土和水文地质特征[C]//中国地理学会冰川冻土学论文选集(冻土学). 北京: 科学出版社, 1982: 27-30.]
    [95] Fan Ronghe, Yao Shangsheng. Disussion on the formation and the trend of development of the perennial frost on southern Qinghai-northern Xizang (Tibet) Plateau[J]. Journal of Glaciology and Geocryology, 1982, 4(1): 45-64. [樊溶河, 姚尚生. 青南藏北高原多年冻土的形成及发展趋势探讨[J]. 冰川冻土, 1982, 4(1): 45-64.]
    [96] Hu Haitao, Xu Guisen. Interpretation of linear geological structure of ERTS satellite in the Wenquan area of Tanggula Mountain and its significance for water searching[J]. Geotechnical Investigation & Surveying, 1982(6): 11-13. [胡海涛, 许贵森. 唐古拉山北侧温泉地区ERTS卫片线性地质构造解释及其找水意义[J]. 工程勘察, 1982(6): 11-13.]
    [97] Petrone K C, Jones J B, Hinzman L D, et al. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G2): 1-13.
    [98] Striegl R G, Aiken G R, Dornblaser M M, et al. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn[J]. Geophysical Research Letters, 2005, 32(21): 1-4.
    [99] Wu Xiaodong, Zhao Lin, Fang Hongbing, et al. Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(1): 176-187
    [100] Mao Tianxu. Environmental hydrochemistry study in a permafrost catchment based on hydrological processes[D]. Beijing: University of Chinese Academy of Sciences, 2016. [毛天旭. 基于水文过程的多年冻土区流域环境水化学特征研究[D]. 北京: 中国科学院大学, 2016.]
    [10[1] Qu Bin, Sillanp?? M, Li Chaoliu, et al. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau[J]. Plos One, 2017, 12(5): e0178166.
    [102] Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I: theory and development[J]. Transactions of the ASAE, 1989, 32(2): 565-571.
    [103] Jansson P E, Moon D S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J]. Environmental Modelling & Software, 2001, 16(1): 37-46.
    [104] Kang Ersi, Cheng Guodong, Song Kechao, et al. Simulation of energy and water balance in Soil- Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China[J]. Science in China: Series D Earth Sciences, 2004, 34(6): 544-551. [康尔泗, 程国栋, 宋克超, 等. 河西走廊黑河山区土壤-植被-大气系统能水平衡模拟研究[J]. 中国科学: D辑地球科学, 2004, 34(6): 544-551.]
    [105] Shiklomanov N I, Nelson F E. Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska[J]. Ecological Modelling, 1999, 123(2/3): 105-125.
    [106] Woo M, Mollinga M, Smith S L. Modeling maximum active layer thaw in boreal and tundra environments using limited data[M]. Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience. Springer, Berlin, Heidelberg, 2008: 125-137.
    [107] Kostiakov A N. On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration[J]. Transactions Sixth Communication International Soil Science, 1932, 1: 7-21.
    [108] Horton R E. An approach toward a physical interpretation of infiltration-capacity[J]. Soil Science Society of America Journal, 1941, 5(C): 399-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700