用户名: 密码: 验证码:
基于柔性基础模型的海上风电机组支撑结构优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:OPTIMIZATION OF OFFSHORE WIND TURBINE SUPPORT STRUCTURES BASED ON FLEXIBLE FOUNDATION MODELS
  • 作者:田德 ; 陈静 ; 罗涛 ; 闫肖蒙 ; 邓英
  • 英文作者:Tian De;Chen Jing;Luo Tao;Yan Xiaomeng;Deng Ying;State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University;
  • 关键词:海上风电机组 ; 粒子群优化 ; 有限元分析 ; 支撑结构 ; 耦合弹簧模型
  • 英文关键词:offshore wind turbines;;particle swarm optimization;;finite element analysis;;support structure;;coupled spring model
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:新能源电力系统国家重点实验室(华北电力大学);
  • 出版日期:2019-04-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:中央高校基本科研业务费专项资金(2018QN065)
  • 语种:中文;
  • 页:TYLX201904040
  • 页数:8
  • CN:04
  • ISSN:11-2082/TK
  • 分类号:301-308
摘要
相比陆上风电机组,海上风电机组支撑结构长期处于风载荷与海浪载荷作用,在设计时还需考虑土壤与基础的相互作用。以某5 MW单桩式海上风电机组支撑结构为模型,考虑基础柔性对机组载荷的影响,应用耦合弹簧模型建立基础模型,计算极限设计载荷,结合有限元模型计算基础部分设计载荷,采用粒子群优化算法,在满足多约束条件下,最小化支撑结构重量。结果表明:考虑基础柔性条件下,应用粒子群优化算法优化支撑结构,在满足各项约束条件的前提下,总体重量降低7.41%。
        Compared with onshore wind turbines,offshore wind turbine support structures is affected frequently by wind loads and wave loads,and taking the support structure of a 5 MW monopile offshore wind turbine as a model,considering the influence of flexible foundation on load in the working process,the coupled spring model is chosen to establish the foundation model,and calculate the extreme design load. Then the finite element model is used to get the load of foundation as part of the design load. Particle swarm optimization algorithm is used to minimize the support structure's mass,under multiple constraint. The result shows that based on the particle swarm optimization algorithm,the overall quality of the structure is reduced by 7.41%,under the premise of satisfying various constraints.
引文
[1]Keivanpour S,Ramudhin A,Kadi D A.The sustainable worldwide offshore wind energy potential:A systematic review[J].Journal of Renewable&Sustainable Energy,2017,9(6):065902.
    [2]Haghi R,Ashuri T,Van P,et al.Integrated multidisciplinary constrained optimization of offshore support structures[A].The Science of Making Torque from Wind[C],Oldenburg,Germany,2014.
    [3]Chew K H,Tai K,Ng E Y K,et al.Optimization of offshore wind turbine support structures using an analytical gradient-based method[J].Energy Procedia,2015,80:100-107.
    [4]Gentils T,Wang L,Kolios A,et al.Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J].Applied Energy,2017,199:187-204.
    [5]卢其进,杨和振.海洋风电支撑结构的随机性动力优化设计[J].振动与冲击,2013,32(17):62-67.[5]Lu Qijin,Yang Hezhen.Probabilistic dynamic optimization design for support structure of offshore wind turbines[J].Journal of Vibration and Shock,2013,32(17):62-67.
    [6]IEC 61400-3,Ed.1:Wind Turbines-Part 3:Design Requirements for offshore wind turbines[S].IEC,2009.
    [7]Jung S,Kim S R,Patil A,et al.Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower[J].Ocean Engineering,2015,109:479-488.
    [8]Damgaard M,Andersen L V,Ibsen L B.Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions[J].Ocean Engineering,2015,101:227-234.
    [9]Bush E,Agarwal P,Manuel L.The influence of foundation modeling assumptions on long-term load prediction for offshore wind turbines[A].International Conference on Offshore Mechanics and Arctic Engineering[C],Honolulu,Hawaii,2009.
    [10]邓英,周峰,田德,等.不同风湍流模型的风电机组载荷计算研究[J].太阳能学报,2014,35(12):2395-2400.[10]Deng Ying,Zhou Feng,Tian De,et al.Research on load calculation of wind turbine for different wind turbulence model[J].Acta Energiae Solaris Sinica,2014,35(12):2395-2400.
    [11]DNV-OS-J101:Offshore standard for design of offshore wind turbine structures[S].DNV,2014.
    [12]Achmus M,Akdag C T,Thieken K.Load-bearing behavior of suction bucket foundations in sand[J].Applied Ocean Research,2013,43(5):157-165.
    [13]Hung L C,Kim S R.Evaluation of undrained bearing capacities of bucket foundations under combined loads[J].Marine Georesources&Geotechnology,2014,32(1):76-92.
    [14]武科,马明月,范庆来,等.软黏土地基上吸力式桶形基础的扭剪承载力分析[J].交通科学与工程,2010,26(4):54-57.[14]Wu Ke,Ma Mingyue,Fan Qinglai,et al.Analysis of torsional resistance of suction bucket foundation[J].Journal of Transport Science and Engineering,2010,26(4):54-57.
    [15]朱斌,熊根,刘晋超,等.砂土中大直径单桩水平受荷离心模型试验[J].岩土工程学报,2013,35(10):1807-1815.[15]Zhu Bin,Xiong Gen,Liu Jinchao,et al.Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J].Chinese Journal of Geotechnical Engineering,2013,35(10):1807-1815.
    [16]GB 50051-2013烟囱设计规范[S].北京:中国计划出版社,2013.
    [17]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-5.[17]Xu Xiuzhong,Hua Hongxing,Chen Zhaoneng.Review of modal identification method based on ambient excitation[J].Journal of Vibration and Shock,2002,21(3):1-5.
    [18]GB/T 19072-2010风力发电机组塔筒[S].北京:中国标准出版社,2010.
    [19]Negm H M,Maalawi K Y.Structural design optimization of wind turbine towers[J].Computers&Structures,2000,74(6):649-666.
    [20]JTS 167-4-2012港口工程桩基规范[S].北京:人民交通出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700