用户名: 密码: 验证码:
武当隆起西段新元古代牌楼花岗岩中黑云母成分特征及成岩指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mineral chemistry of biotite from the Neoproterozoic Pailou granite in western Wudang uplift: Implications for the petrogenesis
  • 作者:张维 ; 彭练红 ; 徐大良 ; 邓新 ; 刘浩 ; 金鑫镖 ; 谭靖
  • 英文作者:ZHANG Wei-feng;PENG Lian-hong;XU Da-liang;DENG Xin;LIU Hao;JIN Xin-biao;TAN Jing;Wuhan Center of Geological Survey;Research Center of Granitic Diagenesis and Mineralization,China Geological Survey;
  • 关键词:矿物成分 ; 黑云母 ; 结晶条件 ; 牌楼花岗岩 ; 武当隆起
  • 英文关键词:mineral chemistry;;biotite;;crystallization condition;;Pailou granite;;Wudang uplift
  • 中文刊名:YSKW
  • 英文刊名:Acta Petrologica et Mineralogica
  • 机构:中国地质调查局武汉地质调查中心;中国地质调查局花岗岩成岩成矿地质研究中心;
  • 出版日期:2019-03-25
  • 出版单位:岩石矿物学杂志
  • 年:2019
  • 期:v.38;No.178
  • 基金:中国地质调查局地质调查项目(DD20160030)~~
  • 语种:中文;
  • 页:YSKW201902005
  • 页数:10
  • CN:02
  • ISSN:11-1966/P
  • 分类号:67-76
摘要
黑云母是花岗岩中常见的造岩矿物,其化学成分可以用于判断岩体形成时的物理化学条件、岩石成因类型及构造环境。本文利用电子探针(EMPA)对武当隆起西段牌楼花岗岩中的黑云母进行了成分分析,结果发现这些黑云母Al~Ⅵ原子数较低(0.128~0.395),而Ti原子数适中(0.236~0.267),属于铁叶云母,并且均具富Fe贫Mg的特征,Fe~(2+)/(Fe~(2+)+Mg)值为0.985~0.989。岩相学观察和化学成分分析结果显示,牌楼二长花岗岩中的黑云母为岩浆成因,结晶温度为640~710℃,寄主岩体的固结压力为0.9~1.7 GPa,log f_(O_2)变化于-18.1~-17.4之间,指示其形成于低氧逸度环境中。岩浆的氧逸度较低可能是导致牌楼岩体不能形成Cu、Au和Mo矿化的决定因素,而缺乏Sn矿化可能与熔体温度较低有关。综合黑云母化学成分和岩石地球化学特征,认为牌楼似斑状二长花岗岩为A型花岗岩,侵位于非造山的伸展构造背景。
        Biotite is an important rock-forming mineral in most of granites,and its mineral chemistry can reveal the crystallization conditions,petrogenesis and tectonic setting in the magma system.In this study,the authors utilized electron microprobe analysis(EMPA)to determine the mineral composition of biotite grains hosted in the Pailou granite.The EMPA data show that the biotite is poor in Al~Ⅵ(0.128 to 0.395)atomic number and moderate in Ti(0.236 to 0.267)atomic number,and shows siderophyllite affinity.In addition,the biotite is rich in iron and poor in magnesium,with Fe~(2+)/(Fe~(2+)+Mg)values from 0.985 to 0.989.Petrography and mineral chemistry indicate that the biotite grains are of magmatic origin.Based on calculation of the EMPA data,the crystallization temperature and pressure of biotite are 640~710℃ and 0.9~1.7 GPa,respectively.Besides,it was formed under the condition of low oxygen fugacity,with the log f_(O_2)values from -18.1 to -17.4.The low oxygen fugacity of magmas can explain the lack of Cu,Au and Mo mineralization,whereas the lack of Sn mineralization may be attributed to the low temperature of magmas.Combined with the study of mineral chemistry of biotite and geochemical features of hosted rocks,the authors hold that the Pailou monzogranite is of A-type and was formed in the nonorogenic tectonic setting.
引文
Abdel-Rahman A F M.1994.Nature of biotites from alkaline,calc-alkaline,and peraluminous magmas[J].Journal of Petrology,35(2):525~541.
    Abrecht J and Hewitt D A.1988.Experimental evidence on the substitution of Ti in biotite[J].American Mineralogist,73(11~12):1 275~1 284.
    Beane R E.1974.Biotite stability in the porphyry copper environment[J].Economic Geology,69(2):241~256.
    Cao H W,Zhang Y H,Santosh M,et al.2017.Mineralogy,zircon U-Pb-Hf isotopes,and whole-rock geochemistry of Late CretaceousEocene granites from the Tengchong terrane,western Yunnan,China:Record of the closure of the Neo-Tethyan Ocean[J].Geological Journal,doi.org/10.1002/gj.2964.
    Dahlquist J A,Alasino P H,Eby G N,et al.2010.Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland(Sierras Pampeanas,Argentina):Geochemical constraints and petrogenesis[J].Lithos,115(1~4):65~81.
    De Albuquerque C A.1973.Geochemistry of biotites from granitic rocks,northern Portugal[J].Geochimica et Cosmochimica Acta,37(7):1 779~1 802.
    Douce A E P.1993.Titanium substitution in biotite:An empirical model with applications to thermometry,O2and H2O barometries,and consequences for biotite stability[J].Chemical Geology,108(1~4):133~162.
    Foster M D.1960.Interpretation of the composition of trioctahedral micas[J].United States Geological Survey,Professional Paper,354-B:1~146.
    Jacobs D C and Parry W T.1976.A comparison of the geochemistry of biotite from some basin and range stocks[J].Economic Geology,71(6):1 029~1 035.
    Jacobs D C and Parry W T.1979.Geochemistry of biotite in the Santa Rita porphyry copper deposit,New Mexico[J].Economic Geology,74(4):860~887.
    Henry D J,Guidotti C V and Thomson J A.2005.The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms[J].American Mineralogist,90(2~3):316~328.
    Lan T G,Fan H R,Yang K F,et al.2015.Geochronology,mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt:Implications for Paleoproterozoic rifting of eastern North China Craton[J].Precambrian Research,266:86~107.
    Lin Wenwei and Peng Lijun.1994.The estimation of Fe3+and Fe2+contents in amphibole and biotite from EMPA data[J].J.Changchun Univ.Earth Sci.,24(2):155~162(in Chinese).
    Ling W L,Ren B F,Duan R C,et al.2008.Timing of the Wudangshan,Yaolinghe volcanic sequences and mafic sills in South Qinling:U-Pb zircon geochronology and tectonic implication[J].Chinese Science Bulletin,53:2 192~2 199.
    Ling W L,Duan R C,Liu X M,et al.2010.U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance[J].Chinese Science Bulletin,55(22):2 440~2 448.
    Linnen R L,Pichavant M and Holtz F.1996.The combined effects of fO2and melt composition on Sn O2solubility and tin diffusivity in haplogranitic melts[J].Geochimica et Cosmochimica Acta,60:4 965~4 976.
    Mungall J E.2002.Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,30:915~918.
    Nachit H,Ibhi A,Abia E H,et al.2005.Discrimination between primary magmatic biotites,reequilibrated biotites and neoformed biotites[J].Comptes Rendus Geoscience,337(16):1 415~1 420.
    Parsapoor A,Khalili M,Tepley F,et al.2015.Mineral chemistry and isotopic composition of magmatic,re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit,Kerman(Southeast of Iran)[J].Ore Geology Reviews,66:200~218.
    Rasmussen K L and Mortensen J K.2013.Magmatic petrogenesis and the evolution of(F:Cl:OH)fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions:Case studies from the northern Canadian Cordillera[J].Ore Geology Reviews,50:118~142.
    Rieder M,Cavazzini G,Dyakonov Y S,et al.1998.Nomenclature of the micas[J].Clays and Clay Minerals,46(5):586~595.
    Robert J L.1976.Titanium solubility in synthetic phlogopite solid solutions[J].Chemical Geology,17:213~227.
    Sarjoughian F,Kananian A,Ahmadian J,et al.2015.Chemical composition of biotite from the Kuhe Dom pluton,Central Iran:Implication for granitoid magmatism and related Cu-Au mineralization[J].Arabian Journal of Geosciences,8(3):1 521~1 533.
    Shabani A A,Lalonde A E and Whalen J B.2003.Composition of biotite from granitic rocks of the Canadian Appalachian Orogen:A potential tectonomagmatic indicator[J]?The Canadian Mineralogist,41:1 381~1 396.
    temprok M.1990.Solubility of tin,tungsten and molybdenum oxides in felsic magmas[J].Mineralium Deposita,25:205~212.
    Sun W,Huang R F,Li H,et al.2015.Porphyry deposits and oxidized magmas[J].Ore Geology Reviews,65:97~131.
    Tang Pan,Tang Juxing,Zheng Wenbao,et al.2017.Progress in study of mineral chemistry of magmatic and hydrothermal biotites[J].Miner.Deps.,36(4):935~950(in Chinese with English abstract).
    Uchida E,Endo S and Makino M.2006.Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J].Resource Geology,57(1):47~56.
    Wang R R,Xu Z Q,Santosh M,et al.2016.Late Neoproterozoic magmatism in South Qinling,Central China:Geochemistry,zircon U-PbLu-Hf isotopes and tectonic implications[J].Tectonophysics,683:43~61.
    Wones D R and Eugster H P.1965.Stability of biotite:Experiment,theory,and application[J].American Mineralogist,50(9):1 228~1 272.
    Wu Yuanbao and Zheng Yengfei.2013.Southward accretion of the North China Block and the tectonic evolution of the Qinling-Tongbai-Hong’an orogenic belt[J].Chin.Sci.Bull.,58:2 246~2 250(in Chinese with English abstract).
    Yang Yang,Wang Xiaoxia,Yu Xiaowei,et al.2017.Chemical composition of biotite and amphibole from Mesozoic granites in northwestern Jiaodong Peninsula,China,and their implications[J].Acta Petrologica Sinica,33(10):3 123~3 136(in Chinese with English abstract).
    Ye Mao,Zhao He,Zhao Mian,et al.2017.Mineral chemistry of biotite and its petrogenesis implication in Lingshan granite pluton,Gan-Hang Belt,SE China[J].Acta Petrologica Sinica,33(3):896~906(in Chinese with English abstract).
    Zhu C and Sverjensky D A.1992.F-Cl-OH partitioning between biotite and apatite[J].Geochimica et Cosmochimica Acta,56(9):3 435~3 467.
    Zhang J Q,Li S R,Santosh M,et al.2015.Mineral chemistry of highMg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains,China:Constraints on mineralization process[J].Ore Geology Reviews,64:200~214.
    Zhang W,Lentz D R,Thorne K G,et al.2016.Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit,west-central New Brunswick:An indicator of halogen and oxygen fugacity of magmatic systems[J].Ore Geology Reviews,77:82~96.
    Zhang Weifeng,Xu Daliang,Peng Lianhong,et al.2018.The discovery and Geological significance of the Neoproterozoic A1-type granite in the Pailou area,Wudang uplift[J].Earth Science,43(7):2 389~2 403(in Chinese with English abstract).
    Zhou Yun,Liang Xinquan,Cai Yongfeng,et al.2017.Petrogenesis and mineralization of Xitian tin-tungsten polymetallic deposit:Constraints from mineral chemistry of biotite from Xitian A-type granite,eastern Hunan Province[J].Earth Science,42(10):1 647~1 657(in Chinese with English abstract).
    Zhu X Y,Chen F K,Liu B X,et al.2015.Geochemistry and zircon ages of mafic dikes in the South Qinling,central China:Evidence for late Neoproterozoic continental rifting in the northern Yangtze block[J].International Journal of Earth Sciences,104(1):27~44.
    林文蔚,彭丽君.1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J].长春地质学院学报,24(2):155~162.
    唐攀,唐菊兴,郑文宝,等.2017.岩浆黑云母和热液黑云母矿物化学研究进展[J].矿床地质,36(4):935~950.
    吴元保,郑永飞.2013.华北陆块古生代南向增生与秦岭-桐柏-红安造山带构造演化[J].科学通报,58(23):2 246~2 250.
    杨阳,王晓霞,于晓卫,等.2017.胶西北中生代花岗岩中黑云母和角闪石成分特征及成岩成矿意义[J].岩石学报,10:3 123~3 136.
    叶茂,赵赫,赵沔,等.2017.赣杭构造带灵山花岗岩体黑云母的矿物化学特征及其对岩石成因的指示意义[J].岩石学报,33(3):896~906.
    张维峰,徐大良,彭练红,等.2018.武当隆起西段牌楼新元古代A1型花岗岩的发现及其地质意义[J].地球科学,43(7):2 389~2 403.
    张业明,韦昌山,付建明,等.2001.关于武当群的几点思考[J].华南地质与矿产,1:36~39.
    周云,梁新权,蔡永丰,等.2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义[J].地球科学,42(10):1 647~1 657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700