用户名: 密码: 验证码:
多年冻土区高温冻土融化固结变形理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical research on melting consolidation deformation of high temperature frozen soil in permafrost area
  • 作者:刘世伟 ; 尚雯
  • 英文作者:Liu Shiwei;Shang Wen;
  • 关键词:高温冻土 ; 融化固结理论 ; 移动区间法 ; 孔隙水压力 ; 相变
  • 中文刊名:SLGH
  • 英文刊名:Water Resources Planning and Design
  • 机构:甘肃省水利水电勘测设计研究院有限责任公司;甘肃省治沙研究所;
  • 出版日期:2019-01-15 16:31
  • 出版单位:水利规划与设计
  • 年:2019
  • 期:No.184
  • 基金:甘肃省重点研发计划项目(17YF1WA155)
  • 语种:中文;
  • 页:SLGH201902025
  • 页数:6
  • CN:02
  • ISSN:11-5014/TV
  • 分类号:81-86
摘要
为研究多年冻土区高温冻土的变形机制,分析了高温冻土与融土在物理力学性质方面的相似性,基于高温冻土具有未冻水量高、相变剧烈、压缩性大及渗透性相对较高的特点,尝试将其变形机理考虑为固结。在文中提出了一种移动区间法用以计算冻土融化固结,基于孔隙冰、水压力相互转化的融化固结模型,采用移动区间法模拟了融化区及高温冻土区的孔隙水压力变化。数值模拟结果表明:孔隙水压力分布曲线的拐点对应于相变温度,融土区由于渗透系数较大、排水条件好而使得孔隙水压力消散较快,相应的孔隙水压力较小;高温冻土区由于渗透系数相对较小,不能及时排水,因此孔隙水压力较高。
        
引文
[1]刘世伟.高温-高含冰量冻土压缩试验及沉降研究[D].北京:中国科学院研究生院,2012.
    [2]Ladanyi B. Creep Behavior of frozen and unfrozen soils:a comparison[C]. Cold Regions Engineering:Putting Research intoPractice.ASCE,1999:173-186.
    [3]Morgenstern N R,Nixon J F. One-dimensional consolidation of thawing soils[J]. Canadian Geotechnical Journal,1971,8:558-565.
    [4]Nixon J F,Morgenstern N R. Practical extensions to a theory of consolidation for thawing soils[C]. Proceedings of the second international conference on permafrost,Edmonton,Yakutsk,U. S. S. R.,1973b:369-377.
    [5]中国科学院兰州冰川冻土研究所.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1990.
    [6]姚晓亮.冻土融化沉降理论与应用研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2010.
    [7]H. A崔托维奇著,张长庆,朱元林译.冻土力学[M].北京:科学出版社,1985.
    [8]Horiguchi K and Miller R D. Hydraulic conductivity functions of frozen materials[C]. Proceedings of the fourth international conference on permafrost,Alaska,American,1983:504-508.
    [9]BURT T P,WILLIAMS P J. Hydraulic conductivity in frozensoils[J]. Earth Surface Processes,1976(01):349-360.
    [10] HORIGUCHI K,MILLER R D. Experimental studies with frozen soil in an“ice sandwich”permeameter[J]. Cold Regions Science and Technology,1980,3(2/3):177-183
    [11]SEYFRIED M S,MURDOCK M D. Use of air permeability to estimate infiltrability of frozen soil[J]. Journal of Hydrology,1997,202:95-107.
    [12]张虎,张建明,张致龙,等.冻结状态青藏粉质黏土的渗透系数测量研究[J].岩土工程学报,2016,38(06):1030-1035.
    [13]WILLIAMS P J,BURT T P. Measurement of hydraulicconductivity of frozen soils[J]. Canadian Geotechanical Journal,1974,11:647-650.
    [14] ANDERSLAND O B,WIGGERT D C,DAVIES S H. Hydraulic conductivity of frozen granular soils[J]. Journal of Environmental Engineering,1996,122(03):212-216.
    [15]MCCAULEY C A,WHITE D M,LILLY M R,et al. A comparison of hydraulic conductivities,permeabilities and infiltration rates in frozen and unfrozen soils[J]. Cold Regions Science and Technology,2002,34(02):117-125.
    [16] ANDERSLAND O B,WIGGERT D C,DAVIES S H. Hydraulic conductivity of frozen granular soils[J]. Journal of Environmental Engineering,1996,122(03):212-216.
    [17]陈渤黎,罗斯琼,吕世华,等.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土,2017(04).
    [18]郭冬楠,臧淑英,赵光影.冻融交替对不同年代排水造林湿地土壤微生物活性及有机碳密度的影响[J].冰川冻土,2017(01).
    [19]张宇,李东庆,明锋.冻融循环作用下土体冻结锋面移动规律试验研究[J].冰川冻土,2016(03).
    [20]朱正坤,范昭平.多年冻土公路工程分类方案的研究[J].西部探矿工程,2012(07).
    [21]李顺群,高凌霞,柴寿喜.冻土力学性质影响因素的显著性和交互作用研究[J].岩土力学,2012(04).
    [22]李得宝,王佳音.冻土的分类[J].黑龙江交通科技,2011(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700