用户名: 密码: 验证码:
冻结状态青藏粉质黏土的渗透系数测量研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of hydraulic conductivity of Qinghai-Tibet Plateau silty clay under subfreezing temperatures
  • 作者:张虎 ; 张建明 ; 张致龙 ; 柴明堂
  • 英文作者:ZHANG Hu;ZHANG Jian-ming;ZHANG Zhi-long;CHAI Ming-tang;State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,CAS;
  • 关键词:青藏粉质黏土 ; 高温冻土 ; 渗透系数 ; 渗透介质
  • 英文关键词:Qinghai-Tibet Plateau silty clay;;warm frozen soil;;hydraulic conductivity;;permeable medium
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室;
  • 出版日期:2015-12-05 15:42
  • 出版单位:岩土工程学报
  • 年:2016
  • 期:v.38;No.296
  • 基金:国家自然科学基金青年科学基金项目(41401087);; 冻土工程国家重点实验室自主研究课题项目(SKLFSE-ZQ-26);; 中国科学院寒区旱区环境与工程研究所青年人才成长基金项目(Y551C91001);; 国家科技支撑计划课题(2014BAG05B03)
  • 语种:中文;
  • 页:YTGC201606008
  • 页数:6
  • CN:06
  • ISSN:32-1124/TU
  • 分类号:67-72
摘要
粉质黏土在青藏高原多年冻土地区广泛分布,为了充分认识其在冻结状态下的渗透性质,开展了一系列渗透试验测量了在-0.6℃~0.1℃条件下含水率为50%的青藏粉质黏土的渗透系数。结果显示:在高负温区间内,冻结粉质黏土的渗透系数处于8.22×10~(-11)~7.19×10~(-9) cm/s之间;另外,渗透系数与土温之间呈现出幂函数关系,土温越接近于0℃,渗透系数增大越快;冻土的渗透系数表现出随着未冻水体积含量的增加而快速增大的趋势。渗透性的存在可测意味着高温冻土在外荷载下会存在固结作用。
        In order to cognize the permeable property of the frozen silty clay spreading widely in permafrost regions on the Qinghai-Tibet Plateau, a series of laboratory tests are conducted to measure the hydraulic conductivities of the frozen silty clays with moisture content of 50% at temperatures from-0.6 to 0.1oC. The results show that under the warm negative temperatures, the hydraulic conductivities of frozen silty clay are in the range of 8.22×10~(-11)~7.19×10~(-9) cm/s. In addition, the hydraulic conductivity has a power function relationship with the soil temperature, and it grows more rapidly as the temperature gets closer to 0 oC. And the hydraulic conductivity expresses a rapid increase tendency with the increasing volumetric content of unfrozen water. The existence and measurability of the permeability in frozen soils indicate that consolidation may occur in warm frozen soils under external loads.
引文
[1]马田田,韦昌富,周家作,等.土体的冻结特征曲线和持水特性[J].岩土工程学报.2015,37(增刊1):172–177.(MA Tian-tian,WEI Chang-fu,ZHOU Jia-zuo,et al.Freezing characteristic curves and water retention characteristics of soils[J].Chinese Journal of Geotechnical Engineering,2015,37(S1):172–177.(in Chinese))
    [2]徐斆祖,OLIPHANT J L,TICE A R.土水势、未冻水含量和温度[J].冰川冻土,1985,7(1):1–11.(XU Xiao-zu,OLIPHANT J L,TICE A R.Soil-water potential and unfrozen water content and temperature[J].Journal of Glaciology and Geocryology,1985,7(1):1–11.(in Chinese))
    [3]ANDERSON D M,TICE A R.Predicting unfrozen water contents in frozen soils from surface area measurements[C]//Proceedings of Frost Action in Soils.Washinton D C:National Academy of Sciences,1972:12–18.
    [4]TSYTOVICH H A.Mechanics of frozen soil[M].Washington D C:Scripta Book Company,1985:204–221.
    [5]MILLER R D,LOCH J P G,BREESLER E.Transport of water and heat in a frozen permeameter[J].Soil Science Society of America Journal,1975,39(6):1029–1036.
    [6]BURT T P,WILLIAMS P J.Hydraulic conductivity in frozen soils[J].Earth Surface Processes,1976(1):349–360.
    [7]HORIGUCHI K,MILLER R D.Experimental studies with frozen soil in an“ice sandwich”permeameter[J].Cold Regions Science and Technology,1980,3(2/3):177–183.
    [8]SEYFRIED M S,MURDOCK M D.Use of air permeability to estimate infiltrability of frozen soil[J].Journal of Hydrology,1997,202:95–107.
    [9]WILLIAMS P J,BURT T P.Measurement of hydraulic conductivity of frozen soils[J].Canadian Geotechanical Journal,1974,11:647–650.
    [10]AGUIRRE-PUENTE J,GRUSON J.Measurement of permeabilities of frozen soils[C]//Proceedings of 4th International Conference on Permafrost.Fairbanks,1983:5–9.
    [11]ANDERSLAND O B,WIGGERT D C,DAVIES S H.Hydraulic conductivity of frozen granular soils[J].Journal of Environmental Engineering,1996,122(3):212–216.
    [12]WIGGERT D C,ANDERSLAND O B,DAVIES S H.Movement of liquid contaminants in partially saturated frozen granular soils[J].Cold Regions Science and Technology,1997,25(2):111–117.
    [13]MCCAULEY C A,WHITE D M,LILLY M R,et al.A comparison of hydraulic conductivities,permeabilities and infiltration rates in frozen and unfrozen soils[J].Cold Regions Science and Technology,2002,34(2):117–125.
    [14]PERFECT E,WILLIAMS P J.Thermally induced water migration in frozen soils[J].Cold Regions Science and Technology,1980,3(2):101–109.
    [15]OLIPHANT J L,TICE A R,NAKANO Y.Water migration due to a temperature gradient in frozen soil[C]//Proceedings of 4th International Conference on Permafrost,Fairbanks,Alaska.Washington D C:National Academy Press,1983:951–956.
    [16]WATANABE K,WAKE T.Hydraulic conductivity in frozen unsaturated soil[C]//Proceedings of 9th International Conference on Permafrost.Fairbanks:University of Alaska,2008.
    [17]NIXON J F.Discrete ice lens theory for frost heave in soils[J].Canadian Geotechanical Journal,1991(28):843–859.
    [18]GB/T 50123—1999土工试验方法标准[S].1991.(GB/T50123—1999 Standard for soil test method[S].1991.(in Chinese))
    [19]徐斆祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2010:59–62.(XU Xiao-zu,WANG Jia-cheng,ZHANG Li-xin.Physics of frozen soil[M].Beijing:Science Press,2010:59–62.(in Chinese))
    [20]苏凯.青藏直流±400 k V输电线路多年冻土区塔基稳定性评价[D].北京:中国科学院大学,2013:28–30.(SU Kai.Stability evaluation for the foundation of DC±400 k V transmission line in permafrost regions on the Qinghai-Tibetan Plateau[D].Beijing:University of Chinese Academy of Sciences,2013:28–30.(in Chinese))
    [21]李广信.高等土力学[M].北京:清华大学出版社,2006:197–199.(LI Guang-xin.Advanced soil mechanics[M].Beijing:Tsinghua University Press,2006:197–199.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700