用户名: 密码: 验证码:
基于傅里叶变换的光纤陀螺测试环境自评估技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Self-Assessment Technique for Fiber Optic Gyroscope Test Environment Based on Fourier Transform
  • 作者:刘元元 ; 杨永斌 ; 冯文帅 ; 于海成
  • 英文作者:Liu Yuanyuan;Yang Yongbin;Feng Wenshuai;Yu Haicheng;Beijing Aerospace Times Optical-Electronic Technology Co., Ltd.;
  • 关键词:光纤光学 ; 光纤陀螺 ; 傅里叶变换 ; 测试环境 ; 自评估技术
  • 英文关键词:fiber optics;;fiber optic gyroscope;;Fourier transform;;test environment;;self-assessment technique
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:北京航天时代光电科技有限公司;
  • 出版日期:2018-12-07 14:04
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.445
  • 基金:预研项目(30508040203)
  • 语种:中文;
  • 页:GXXB201904010
  • 页数:8
  • CN:04
  • ISSN:31-1252/O4
  • 分类号:79-86
摘要
提出了一种基于傅里叶变换的光纤陀螺(FOG)测试环境自评估技术。测试结果表明,FOG零偏稳定性由环境3中的0.0015 (°)/h(100 s, 1σ)(数据100 s平滑后的标准差)降低到环境4中的0.0019 (°)/h (100 s, 1σ);随机游走系数由环境3中的2.1565×10~(-4)(°)/h~(1/2)降低到环境4中的2.8876×10~(-4)(°)/h~(1/2)。对另一只脉冲输出的陀螺进行了不同环境下的测试,零偏稳定性由环境3中的0.0013 (°)/h (100 s, 1σ)降低到环境4中的0.0021 (°)/h (100 s, 1σ)。通过两只陀螺的实验,验证了所提自评估技术的有效性,为高精度FOG的精度测试提供了指导。
        A self-assessment technique based on Fourier transform is presented to evaluate test environment of fiber optic gyroscope(FOG). Test results show that the zero bias stability of FOG is decreased to 0.0019(°)/h(100 s, 1σ, that means the standard deviation after 100 s smoothing) in environment 4 from 0.0015(°)/h(100 s, 1σ) in environment 3, and random walk coefficient is decreased to 2.8876×10~(-4)(°)/h~(1/2) in environment 4 from 2.1565×10~(-4)(°)/h~(1/2) in environment 3. Another FOG with pulse output is tested under different environments, whose zero bias stability is decreased to 0.0021(°)/h(100 s, 1σ) in environment 4 from 0.0013(°)/h(100 s, 1σ) in environment 3. The experiments of two FOGs demonstrate that the proposed self-assessment technique is effective, which provides guidance for the precision test of high precision FOG.
引文
[1] Wu Y J.The current situation and countermeasures of high precision fiber optic gyro[J].Navigation Positioning and Timing,2015,2(4):53-57.吴衍记.高精度光纤陀螺发展现状及对策[J].导航定位与授时,2015,2(4):53-57.
    [2] Xue L L,Chen S C,Chen X Z.Development and review of foreign inertial technology in 2017[J].Navigation and Control,2018,17(2):1-10.薛连莉,陈少春,陈效真.2017年国外惯性技术发展与回顾[J].导航与控制,2018,17(2):1-10.
    [3] Xue L L,Chen S C,Chen X Z.Development and review of foreign inertial technology in 2016[J].Navigation and Control,2017,16(3):105-112,84.薛连莉,陈少春,陈效真.2016年国外惯性技术发展与回顾[J].导航与控制,2017,16(3):105-112,84.
    [4] Xu H G,Pei Y F,Liu C,et al.The development and application of fibre optic gyroscope INS in navigation domain[J].Navigation Positioning and Timing,2018,5(2):7-11.徐海刚,裴玉锋,刘冲,等.光纤陀螺惯导在航海领域的发展与应用[J].导航定位与授时,2018,5(2):7-11.
    [5] Wang X K,Gao Y P,Wang P L,et al.Measurement and assessment of working environment for fiber optic gyroscope[J].Journal of Time and Frequency,2016,39(1):54-60.王惜康,高玉平,王平利,等.光纤陀螺仪工作环境的测量与评估[J].时间频率学报,2016,39(1):54-60.
    [6] Narasimhappa M,Sabat S L,Nayak J.Fiber-optic gyroscope signal denoising using an adaptive robust kalman filter[J].IEEE Sensors Journal,2016,16(10):3711-3718.
    [7] Yang G L,Liu Y Y,Li M,et al.AMA- and RWE- based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J].Sensors,2015,15(10):26940-26960.
    [8] Li Y H,Yang G L,Liu Y Y.Application of EMD filtering based on l2-norm in denoising FOG signal[J].Journal of Chinese Inertial Technology,2017,25(2):244-248.
    [9] Tao Y,Li H J,Xu H G.Research on precision of high accuracy FOG-SINS under steady conditions[J].Navigation Positioning and Timing,2018,5(3):30-34.陶冶,李海军,徐海刚.稳定环境下的高精度光纤捷联惯导精度探索研究[J].导航定位与授时,2018,5(3):30-34.
    [10] Sanders G A,Sanders S J,Strandjord L K,et al.Fiber optic gyro development at Honeywell[J].Proceedings of SPIE,2016,9852:985207.
    [11] Shupe D M.Thermally induced nonreciprocity in the fiber-optic interferometer[J].Applied Optics,1980,19(5):654-655.
    [12] Liu Y Y,Yang G L,Yin H L.Temperature drift modeling and compensation of FOG combined extended forgetting factor recursive least square (EFRLS)[C].Chinese Control Conference,2015:5035-5040.
    [13] Gao Z X.Research on environmental error of fiber-optic gyroscope and suppressing method[D].Harbin:Harbin Engineering University,2017:3-16.郜中星.光纤陀螺环境误差机理与抑制方法研究[D].哈尔滨:哈尔滨工程大学,2017:3-16.
    [14] Yu L Y,Wang Z O.Modeling and analysis of micro vibration signal detection of fiber optic gyroscope[J].Laser Journal,2016,37(10):57-61.俞梁英,王子欧.光纤陀螺微振动信号检测的建模与分析[J].激光杂志,2016,37(10):57-61.
    [15] Shu J T,Li X Y,Wu L,et al.Vibration error restrain technology for high-precision fiber optic gyroscope[J].Infrared and Laser Engineering,2011,40(11):2201-2206.舒建涛,李绪友,吴磊,等.高精度光纤陀螺振动误差抑制技术[J].红外与激光工程,2011,40(11):2201-2206.
    [16] Chen Y Z,Wang X X,Gao Y Y,et al.Research on the influence mechanism of earth′s magnetic field on zero bias of high precision FOG[J].Electronic Measurement Technology,2016,39(1):147-150.谌尧周,王夏霄,高洋洋,等.地磁场对高精度光纤陀螺仪零偏的影响机理研究[J].电子测量技术,2016,39(1):147-150.
    [17] Zeng H D,Han F,Liu Y L.Development and current situation of Fourier analysis[J].Modern Electronics Technique,2014,37(3):144-147.曾海东,韩峰,刘瑶琳.傅里叶分析的发展与现状[J].现代电子技术,2014,37(3):144-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700