用户名: 密码: 验证码:
液压油箱中液压油掺混气泡的气液两相流研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gas-water Two-phase Flow of the Hydraulic Oil with Bubble in Hydraulic Oil Tank
  • 作者:张继铭 ; 马晓霞 ; 冀宏 ; 王金林
  • 英文作者:Zhang Jiming;Ma Xiaoxia;Ji Hong;Wang Jinlin;College of Energy and Power Engineering,Lanzhou University of Technology;
  • 关键词:液压油箱 ; 气液两相流 ; 动力粘度 ; 气泡直径
  • 英文关键词:Hydraulic oil tank;;Gas-water two-phase flow;;Dynamic viscosity;;Bubble diameter
  • 中文刊名:GSKX
  • 英文刊名:Journal of Gansu Sciences
  • 机构:兰州理工大学能源与动力工程学院;
  • 出版日期:2019-02-25
  • 出版单位:甘肃科学学报
  • 年:2019
  • 期:v.31;No.137
  • 基金:甘肃省青年科技基金计划项目(1610RJYA015)
  • 语种:中文;
  • 页:GSKX201901021
  • 页数:5
  • CN:01
  • ISSN:62-1098/N
  • 分类号:111-115
摘要
利用欧拉-欧拉多相流模型,针对液压油箱中液压油掺混气泡进行气液两相流数值模拟仿真,对比分析在不同液压油动力粘度与不同气泡直径条件下气泡在液压油箱内的流动与分布规律。研究表明:气泡直径一定,随着油液动力粘度的增大,掺混在油液中的气泡上浮逸出的速度越慢;油液动力粘度一定,随着气泡直径的增大,直径较大的气泡快速上浮逸出,直径0.25~1mm的气泡上浮逸出速度变慢,进入液压系统参与工作,造成不利影响;并在此基础上对油箱结构进行优化改进,通过设置隔板,延长油液在油箱中的流动距离与时间,有利于掺混在油液中的气泡上浮逸出。
        Analog simulation is carried out for the value of gas-water two-phase flow of the hydraulic oil with bubbles in hydraulic oil tank by making use of Euler-Euler of multiphase flow model,and the flowing and distribution rule of the bubble with different hydraulic oil dynamic viscosity and different bubble diameter conditions in the hydraulic oil tank.According to the research,When the diameter of the bubble is fixed,the floating and escaping speed of the bubble in the oil will be slower with the increasing of the oil fluid dynamic viscosity.When the oil fluid dynamic viscosity is fixed,the bubbles with relatively large diameter quickly float and escape with the increasing of the diameter of the bubbles,and the floating and escaping speed of the bubbles with the diameter of 0.25-1mm slow and enter the hydraulic system to participate in the work to generate adverse effect.The oil structure is optimized based on this basis,setting baffle and prolonging the floating distance and time of oil fluid in the oil tank help the floating and escaping of the bubbles in the oil fluid.
引文
[1]朱志坚,米特哈特,陈宏伟,等.气泡对液压系统的危害及防范措施[J].液压与气动,2002,(1):36-38.
    [2]王东屏.流动液体中气穴判定的新观点[J].大连铁道学院学报,2000,21(2):43-46.
    [3]祁冠芳,张蕉蕉,孙家根.液压油箱小型化及研发新动向[J].机床与液压,2011,39(24):66-68,104.
    [4] Johannes Untch,Thees Vollmer,Thorsten Lang.Approach for the Investigation and Evaluation of Hydraulic Tank Designs Regarding Air in Oil Behavior[C]//Proceedings of the 9th International Fluid Power Conference,Aachen,Germany,2014.
    [5] Thees Vollmer,Johannes Untch.Capabilities and Challenges of Cfd Multiphase Simulation of Hydraulic Tanks[C]//Proceedings of the 8th FPNI Ph.D Symposium on Fluid Power Conference,Lappeenranta,Finland,2014.
    [6] Vito Tic,Uni.-Dipl.-Lng.Dr.Darko Lovrec.Trajectories of Solid and Gaseous Particles in a Hydraulic Reservoir[C]//Proceedings of the 8th International Fluid Power Conference.Dresden,Germany,2012.
    [7] Vito Tic,Darko Lovrec.Design of Modern Hydraulic Tank Using Fluid Flow Simulation[C]//Proceedings of the 7th International Fluid Power Conference,Aachen,Germany,2010.
    [8] Sayako Sakama,Yutaka Tanaka,Ryushi Suzuki.Performance Evaluation of Bubble Eliminator Using Swirl Flow in Hydraulic Systems[C]//Proceedings of the 8th International Conference on Fluid Power Transmission and Control,Hangzhou,China,2013.
    [9]陈斌.倾斜壁面附近上升气泡的直接数值模拟[J].工程热物理学报,2007,28(6):965-967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700