用户名: 密码: 验证码:
锐钛矿-金红石混合晶型TiO_2降解气相苯
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation of gas phase benzene by anatase-rutile mixed phase TiO_2
  • 作者:沈晓玲 ; 田立江 ; 李帅 ; 刘秉坤 ; 李杰
  • 英文作者:SHEN Xiaoling;TIAN Lijiang;LI Shuai;LIU Bingkun;LI Jie;School of Environment and Spatial Informatics,China University of Mining and Technology;
  • 关键词:溶胶-凝胶法 ; 煅烧 ; TiO_2 ; 混合晶型 ; ; 光催化 ; 反应动力学
  • 英文关键词:sol-gel method;;calcination;;TiO_2;;mixed phase;;benzene;;photocatalysis;;reaction kinetics
  • 中文刊名:HGHB
  • 英文刊名:Environmental Protection of Chemical Industry
  • 机构:中国矿业大学环境与测绘学院;
  • 出版日期:2019-02-21 14:46
  • 出版单位:化工环保
  • 年:2019
  • 期:v.39;No.230
  • 基金:国家自然科学基金项目(51208502)
  • 语种:中文;
  • 页:HGHB201902011
  • 页数:6
  • CN:02
  • ISSN:11-2215/X
  • 分类号:62-67
摘要
用溶胶-凝胶法并通过控制煅烧温度合成不同晶相比的混合晶型纳米TiO_2,在紫外光光照下降解气相苯。考察了苯初始质量浓度、紫外灯光照强度和催化剂加入量对苯去除率的影响;探究了光催化降解气相苯的动力学特征。结果表明:450℃煅烧制备的催化剂降解苯效率最高,此催化剂金红石相质量分数为6.30%;在苯初始质量浓度为74.39 mg/m~3、催化剂加入量为7 g、光照强度为2.18 klux的最佳条件下反应84 min,苯去除率达99.73%;光催化降解率与光照强度之间符合0.5级动力学特征;当催化剂加入量为3 g时,单位时间单位质量催化剂降解苯的质量最多;苯的光催化降解反应均符合一级动力学方程。
        The mixed phase nano TiO_2 with different crystalline phases was synthesized by sol-gel method under different calcination temperature,and was used for degradation of gas phase benzene under ultraviolet light. The effects of initial benzene mass concentration,ultraviolet light intensity and catalyst amount on the benzene removal rate were investigated. The kinetic characteristics of photocatalytic degradation of gaseous benzene were investigated. The results showed that:The catalyst prepared by calcination at 450 ℃ had the highest degradation ef?ciency of benzene,and the mass fraction of rutile phase of the catalyst was 6.30%;The benzene removal rate reached 99.73% under the optimum conditions of 74.39 mg/m~3 of initial benzene mass concentration,7 g of catalyst addition and 2.18 klux of light intensity and 84 min of reaction time;The relationship between photocatalytic degradation rate and light intensity accorded with the 0.5 level kinetic characteristics;When the catalyst amount was 3 g,the mass of benzene degraded by unit time unit mass catalyst was the most;The photocatalytic degradation of benzene was consistent with ?rst-order kinetic equation.
引文
[1]贾雪清. BiOBr光催化降解苯系物及动力学研究[D].青岛:山东大学,2017.
    [2]WANG Y,HE Y,LAI Q,et al. Review of the progress in preparing nano TiO2:an important environmental engineering material[J].环境科学学报(英文版),2014,26(11):2139-2177.
    [3]孙玉颖,吴娟,马东,等.BiPO4-BiVO4复合光催化剂的制备及其光催化性能[J].化工环保,2016,36(6):630-634.
    [4]张卫梅,李巧玲. TiO2中空微球的制备及其对罗丹明B的光催化降解[J].化工环保,2015,35(6):630-633.
    [5]MOMENI M M,GHAYEB Y,GHONCHEGI Z. Fabricationandcharacterizationofcopperdoped TiO2,nanotubearraysbyinsituelectrochemicalmethodas efficientvisible-lightphotocatalyst[J].CeramInt,2015,41(7):8735-8741.
    [6]TIAN H,MA J,LI K,et al. Hydrothermal synthesis of S-doped TiO2,nanoparticles and their photocatalytic abilityfordegradationofmethylorange[J].Ceram Int,2009,35(3):1289-1292.
    [7]CHOI Y,KIM H,MOON G,et al. Boosting up the low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst:thiocyanate as a selective modi?er[J]. Acs Catal,2016,6(2):821-828.
    [8]QIAN X,HAN H,CHEN Y,et al. Sol-gel solvothermalroutetosynthesizeanatase/brookite/rutile TiO2,nanocomposites with highly photocatalytic activity[J].J Sol-Gel Sci Technol,2017(1/2/3/4):1-8.
    [9]BELTRáN A,GRACIA L,ANDRéS J. Density functional theory study of the brookite surfaces and phase transitionsbetweennaturaltitaniapolymorphs[J].J Phys Chem B,2006,110(46):23417-23423.
    [10]HOSONOE,FUJIHARAS,KEITAKAKIUCHI A,et al. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2?lms in aqueous TiCl3 solutions under hydrothermal conditions[J]. J Amer Chem Soc,2004,126(25):7790-7791.
    [11]SHEN S,WANG X L,CHEN T,et al. Transfer of photoinducedelectronsinanatase-rutile TiO2determined by time-resolved mid-infrared spectroscopy[J].J Phys Chem C,2014,118(24):12661-12668.
    [12]刘正锋.TiO2/ACF复合材料的溶胶-凝胶法制备及其对苯的去除性能研究[D].哈尔滨:东北林业大学,2008.
    [13]SPURR R A,MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer[J].Anal Chem,1957,29(5):760-762.
    [14]CHEN R,LU J,XIAO J,et al.α-Fe2O3,supported Bi2WO6,for photocatalytic degradation of gaseous benzene[J]. Solid State Sci,2017,71:14-21.
    [15]MA J,ZHU C,LU J,et al. Catalytic degradation of gaseous benzene by using TiO2/goethite immobilized onpalygorskite:preparation,characterizationand mechanism[J]. Solid State Sci,2015,49:1-9.
    [16]JAMALLUDDINN A,ABDULLAH AZ.Reactive dyedegradationbycombinedFe(Ⅲ)/TiO2catalyst andultrasonicirradiation:effectofFe(Ⅲ)loading andcalcination temperature[J]. Ultrason Sonochem,2011,18(2):669-678.
    [17]WangJ,JiangZ,ZhangZ,etal.Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation.[J].Ultrason Sonochemi,2008,15(5):768-774.
    [18]DANESHVAR N,RASOULIFARD M H,KHATAEE A R,et al. Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder.[J]. J Hazard Mater,2007,143(1):95-101.
    [19]JAMALISS,SINGHD,TAVAKKOLIH,etal.Microwave-assistedsynthesisofnanostructuredperovskite-type oxide with ef?cient photocatalytic activity against organic reactants in gaseous and aqueous phases[J]. Mater Sci Sem Process,2017,64:47-54.
    [20]张帆,杜建康,王志良,等.UV-TiO2/硅藻土光催化降解DMF的影响因素分析[J].东南大学学报(自然科学版),2010,40(2):393-396.
    [21]LIN Y T,WENGCH,HSUHJ,etal.Effectof oxygen,moisture,and temperature on the photo oxidation of ethylene on N-doped TiO2,catalyst[J]. Sep Purif Technol,2014,134:117-125.
    [22]JACOBY W A,BLAKE D M,NOBLE R D,et al.Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis[J]. J Catal,1995,157(1):87-96.
    [23]SANGBK,HONGSC.Kineticstudyforphotocatalytic degradation of volatile organic compounds in air using thin?lm TiO2 photocatalyst[J]. Appl Catal B Environ,2002,35(4):305-315.
    [24]丁鹏,谢忠雷,唐艳茹,等. TiO2-Bi2O3纳米粒子气相光催化降解对二甲苯[J].化工环保,2012,32(2):109-112.
    [25]张绪立,王富民,郭焕祖,等. TiO2光催化法降解空气中的苯[J].化工环保,2014,34(6):505-510.
    [26]沈文浩,龙周,陈小泉,等.纳米TiO2光催化降解甲醛的影响因素[J].华南理工大学学报(自然科学版),2010,38(8):142-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700