用户名: 密码: 验证码:
太湖沉积物铁形态分布特征及磷铁相关性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution of iron forms and their correlations analysis with phosphorus forms in the sedimentary profiles of Taihu Lake
  • 作者:杨文斌 ; 唐皓 ; 韩超 ; 丁士明
  • 英文作者:YANG Wen-bin;TANG Hao;HAN Chao;DING Shi-ming;College of Environmental Science and Engineering,Anhui Normal University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:铁形态分级 ; 藻型湖区 ; 草藻过渡型湖区 ; 草型湖区 ; 相关性分析 ; 太湖
  • 英文关键词:sequential extraction for iron;;phytoplankton dominated zone;;macrophyte dominated zone;;phytoplankton-macrophyte transition zone;;correlativity;;Taihu Lake
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:安徽师范大学环境科学与工程学院;中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室;
  • 出版日期:2016-04-20
  • 出版单位:中国环境科学
  • 年:2016
  • 期:v.36
  • 基金:安徽省自然科学基金项目(1208085MD60);; 国家自然科学基金项目(31070338)
  • 语种:中文;
  • 页:ZGHJ201604033
  • 页数:12
  • CN:04
  • ISSN:11-2201/X
  • 分类号:187-198
摘要
通过对太湖藻型湖区、草藻过渡型湖区、草型湖区柱状沉积物进行铁的形态分级分析沉积物中不同提取态磷铁含量,获得不同形态铁的空间分布特征.结果表明:沉积物总铁含量藻型湖区31.57mg/g(SD=8.51)>过渡型湖区30.34mg/g(SD=11.97)>草型湖区25.25mg/g(SD=4.59),不同湖区沉积物中铁形态的含量依次为可还原(晶型)铁氧化物Fe_(ox2)>碳酸盐铁Fe_(carb)>易还原(无定形)铁氧化物Fe_(ox1)>低活性硅酸铁Feprs>磁铁矿Femag>可吸附性Fe(Ⅱ),Fe_(carb)、Fe_(ox1)、Fe_(ox2),3种铁形态属于高活性铁Fe(III),含量为7.79,6.16,8.18mg/g,分别占总铁含量的28.56%,21.54%,29.53%,表明高活性铁(III)是沉积物中最主要的铁形态;沉积物中各提取态磷含量大小比较为NH_2OH·HCl-P>MgCl_2-P>NaAc-P>Na_2S_2O_4-P>浓HCl-P>(NH_4)_2C_2O_4-P,含量较高的MgCl_2-P(0.067mg/g)、NaAc-P(0.061mg/g)、NH_2OH·HCl-P(0.068mg/g),分别占总提取磷的35.28%、31.97%和22.55%,是沉积物铁分级提取态磷中最主要的形态.磷-铁相关性分析表明,二者之间呈显著的正相关(P<0.05),进一步从铁形态分级角度证实铁是沉积物內源磷释放的关键因子.
        Occureneces and distributions of iron forms in the sediment cores from three typically zones of Lake Taihu, i.e. phytoplankton dominated zone, macrophyte dominated zone, and phytoplankton-macrophyte transition zone, were investigated using the sequential extraction procedure. Generally, the total iron contents decreased in the order: phytoplankton dominated zone(31.57±8.51mg/g)> phytoplankton- macrophyte transition zone(30.34± 11.97mg/g)> macrophyte dominated zone(25.25±4.59mg/g), while the contents of different iron forms in the interest sites followed the variations: reducible oxides Fe_(ox2)>carbonate associated Fe Fe_(carb)>easilyreducible oxides Fe_(ox1)>poorly reactive sheet silicate Fe Feprs>magnetite Femag>Absorbed Fe(Ⅱ), Fe_(carb)、Fe_(ox1)、Fe_(ox2) weremeasured to be7.79mg/g, 6.16mg/g, 8.18mg/g, accounting for 28.56%, 21.54%, 29.53% of total iron respectively, suggesting those highly reactive iron Fe(III) were the dominated iron forms. The concents of different extracted phosphorus in sediment decreased in the order: NH_2OH·HCl-P>MgCl_2-P>NaAc-P>Na_2S_2O_4-P>Concentrated HCl-P>(NH_4)_2C_2O_4-P. Three dominated phosphorus fractions including MgCl_2-P、NaAc-P、NH_2OH·HCl-Pwere measured to be 0.067mg/g, 0.061mg/g, 0.068mg/g, accounting for 35.28%、31.97% and 22.55% of the total extracted phosphorus.Significantly positive relationships were observed between the extracted phosphorus and iron fractions using the sequential extraction(P<0.05), further confirming the concomitant release of phosphorus from reduction dissolution of Fe(oxyhydr) oxides in sediments.
引文
[1]高丽,杨浩,周健民.湖泊沉积物中磷释放的研究进展[J].土壤,2004,36(1):12-15.
    [2]Downing J A,Cauley Mc E.The nitrogen:phosphorous relationship in lakes[J].Limnology and Oceanography,1992,37(5):36-945.
    [3]Jin L V,Wu H J,Chen M Q.Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15subtropical,urban shallow lakes in Wuhan,China[J].Limnologica Ecology and Management of Inland Waters,2011,41(1):48-56.
    [4]Christophoros C,Fytianos K.Conditions affecting the release of phosphorus from surface lake sediments[J].Journal of Environmental Quality,2006,35(5):1181–1192.
    [5]Bostrom B,Andersen J M,Fleischer S,et al.Exchange of phosphorus across the sediment-water interface[J].Hydrobiologia,1988,170(3):229-244.
    [6]EINSELE W.Uber die Beziehungen des Eisenkreislaufszum Phosphatkreislaufim Eutrophen See[J].Arch.Hydrobiol.,1936,29:664-686.
    [7]Mortimer C.The exchange of dissolved substances between mud and water in lakes[J].J.Ecol.,1941,29:280-329.
    [8]Rozan T F,Taillefert M,Trouwborst R E,et al.Iron-sulfurphosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms[J].Limnology and Oceanography,2002,47(5):1346-1354.
    [9]Jensen H S,Kristensen P,Jeppesen E,et al.Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes[J].Hydrobiologia,1992,235(1):731-743.
    [10]Lovely D R.Dissimilatory Fe(Ⅲ)and M n(Ⅳ)reduction[J].Microbiol.Rev.,1991,55:259-287.
    [11]熊毅,陈家坊,马毅杰,等.土壤胶体(第二册)[M].北京:科学出版社,1985:245-268.
    [12]邹元春,吕宪国,等.三江平原多级沟渠系统沉积物中铁的分布特征[J].环境科学,2009,30(3):889-893.
    [13]杨宏伟,吴雅丽,等.黄河干流表层沉积物铁形态的分布特征及相关性分析[J].中国环境科学,2015,35(12):3663-3669.
    [14]王超,邹丽敏,王沛芳,等.典型城市浅水湖泊沉积物中磷与铁的形态分布及相关关系[J].环境科学,2008,29(12):3400-3404.
    [15]朱广伟.太湖水质的时空分异特征及其与水华的关系[J].长江流域资源与环境,2009,18(5):439-445.
    [16]S.W.Poulton,D.E.Canfield.Development of a sequential extraction procedure for iron:implications for iron partitioning in continentally derived particulates[J].Chemical Geologym,2005,214:209–221.
    [17]王振华.湖泊沉积物铁铝对磷赋存形态及其转化的影响[D].哈尔滨:东北农业大学,2012.
    [18]杨宏伟,郭博书,李经纬.内蒙古沙漠与沙尘粒子中磷形态分布特征及其环境意义[J].环境化学,2012,31(7):990-997.
    [19]鲁如坤.土壤农业化学分析方法[M].南京:河海大学出版社,2000.
    [20]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005.
    [21]袁和忠,沈吉,等.太湖水体及表层沉积物磷空间分布特征及差异性分析[J].环境科学,2010,31(4):954-959.
    [22]Enfeng Liu.Gavin F.Comprehensive evaluation of heavy metal contamination in surface and core sediments of Taihu Lake,the third largest freshwater lake in China[J].Environ.Earth.Sci.,2012,67:39–51.
    [23]Aller R C,Heilburun C,Panzeca C,et al.Coupling between sedimentary dynamics,early diagenetic processes,and biogeochemical cycling in the Amazon-Guianas mobile mudbelt:coastal French Guiana[J].Marine Geology,2004,208:331-360.
    [24]Raiswell R,Canfield D E,Sources of iron for pyrite formation in marine sediments[J].American Journal of Science,1998,298:219-245.
    [25]Poulton S W,Raiswell R.The low-temperature geochemical cycle of iron:from continental fluxes to marine sediment deposition[J].American Journal Science,2002,302:774-805.
    [26]Thamdrup B.Bacterial manganese and iron reduction in aquatic sediments[J].Advances in Microbiology and Ecology,2000,16:41–84.
    [27]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(III)and Mn(IV)reduction[J].Advances in Microbial Physiology,2004,49:219-286.
    [28]Canfield D E.Reactive iron in marine sediments.Geochimicaet Cosmochimica Acta,1989,53:619-632.Thamdrup B.Bacterial manganese and iron reduction in aquatic sediments[J].Advances in Microbiology and Ecology,2000,16:41–84.
    [29]马旭阳.黄河水体沉积物中铁与磷的形态分布及相关分析[D].呼和浩特:内蒙古师范大学,2015.
    [30]张路,范成新,等.太湖及其主要入湖河流沉积磷形态分布研究[J].地球化学,2014,33(4):423-432.
    [31]Jensen H S,Kristensen P,Jeppesen E,et al.Iron:Phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes[J].Hydrobiologia,1992,235/236:731–743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700