用户名: 密码: 验证码:
从矿物粉晶表面反应性到矿物晶面反应性——以黄铁矿氧化行为的晶面差异性为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite
  • 作者:何宏平 ; 鲜海洋 ; 朱建喜 ; 谭伟 ; 梁晓亮 ; 陈锰
  • 英文作者:HE HongPing;XIAN HaiYang;ZHU JianXi;TAN Wei;LIANG XiaoLiang;CHEN Meng;CAS Key Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Mineral Physics and Materials,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:黄铁矿 ; 晶面 ; 反应性 ; 氧化速率 ; 氧化机理
  • 英文关键词:Pyrite;;Crystal face;;Reactivity;;Oxidation rate;;Oxidation mechanism
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国科学院矿物学与成矿学重点实验室中国科学院广州地球化学研究所;广东省矿物物理与材料研究开发重点实验室中国科学院广州地球化学研究所;中国科学院大学;
  • 出版日期:2019-01-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金项目(41573112);; 国家外专局“创新国际团队项目”(20140491534)联合资助
  • 语种:中文;
  • 页:YSXB201901010
  • 页数:8
  • CN:01
  • ISSN:11-1922/P
  • 分类号:135-142
摘要
地球系统中各种矿物相的物理化学反应大多是从矿物表面或界面开始的。要揭示矿物表面反应性的本质,就需要从控制其反应性的表面结构入手。由于实验条件的限制,绝大多数关于矿物表面物理化学性质的研究主要采用粉晶作为研究对象。尽管粉晶方法在研究诸如硅酸盐、碳酸盐溶解和沉淀结晶等过程中被普遍采用,但这种基于矿物粉晶的研究方法还是有一定的不足。因为形成粉晶的破碎研磨过程会导致晶体高能面的出现,高能面所具有的高活性可能会加速其反应过程,应用于地球化学反应的计算结果就可能高估了实际的地球化学反应速率。本研究以黄铁矿表面氧化反应的晶面差异性为例,从晶面结构制约反应性的角度出发,重新审视了黄铁矿氧化的相关问题,弥补了传统"粉晶研究"中对黄铁矿氧化速率和氧化机理认识的缺陷。黄铁矿宽范围的氧化速率实测值很可能是由不同晶面间较大的反应性差异导致;水在黄铁矿的氧化过程中同时扮演着传递电子的催化剂和反应物的角色,也是黄铁矿氧化反应速控步(rate-limiting step)的核心物质。这些认识首次明确了黄铁矿不同晶面反应性差异的重要性,并提示我们应将传统表面矿物学的研究推向更为精确的晶面矿物学水平。这一从晶面角度考察发生在矿物表面的地球化学反应的研究方法可为构建更为精确的地球化学模型提供理论基础。
        Almost all geochemical reactions occurring in the Earth system start at mineral surfaces or mineral-water interfaces. To reveal the nature of surface reactivity,the surface structure of minerals needs to be investigated,which control their surface reactivity.However,due to the limitation of experimental techniques,most studies on the physical and chemical properties of mineral surfaces were mainly carried out by using mineral powders as studying materials. Despite that the using of mineral powder is widely accepted in many case studies,such as the dissolution and precipitation of silicate and carbonate minerals,such methods based on mineral powder still have certain deficiencies for the investigation of mineral surface reactivity. Surfaces with high energy,which can enhance their surface reactivity,will be produced during sample preparation by crushing or grinding. Thus,the obtained experimental results may lead to an overestimation of geochemical reaction in comparison to real situations. Based on the perspective of structure dependent surface reactivity,this study makes up the lack for understanding the rate and mechanism of pyrite oxidation and provides new insights into the oxidation mechanism. Our study demonstrates that the wide range of pyrite oxidation rates reported in literatures is resulted from the prominent surface reactivity differences among different crystal faces. In these reaction systems,water molecules act as both reactant and catalyst for electron transfer in the oxidation process and also is the core substance in the reactions. These understandings have clarified the importance of the surface reactivity differences among different crystal faces. The present study suggests that,to reveal the real geochemical processes,we should focus on the reactivity of certain crystal faces with high accuracy rather than of traditionally concerned powder surfaces. Such approaches, based on the perspective of crystal face reactivity, could provide fundamental knowledge for constructing accurate geochemical models.
引文
Alfonso DR.2010.Computational investigation of Fe S2Surfaces and prediction of effects of sulfur environment on stabilities.The Journal of Physical Chemistry C,114(19):8971-8980
    Balci N,ShanksⅢWC,Mayer B and Mandernack KW.2007.Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite.Geochimica et Cosmochimica Acta,71(15):3796-3811
    Blasco M,Gázquez MJ,Pérez-Moreno SM,Grande JA,Valente T,Santisteban M,de la Torre ML and Bolívar JP.2016.Polonium behaviour in reservoirs potentially affected by acid mine drainage(AMD)in the Iberian Pyrite Belt(SW of Spain).Journal of Environmental Radioactivity,152:60-69
    Cai J and Philpott MR.2004.Electronic structure of bulk and(0 0 1)surface layers of pyrite Fe S2.Computational Materials Science,30(3-4):358-363
    Cai YJ.1990.Experimental study of crystal forms of pyrite.Bull.Nanjing Inst.Geol.M.R.,Chinese Acad.Geol.Sci.,11(2):33-45(in Chinese with English abstract)
    Chandra AP and Gerson AR.2010.The mechanisms of pyrite oxidation and leaching:A fundamental perspective.Surface Science Reports,65(9):293-315
    Chandra AP and Gerson AR.2011.Pyrite(Fe S2)oxidation:A submicron synchrotron investigation of the initial steps.Geochimica et Cosmochimica Acta,75(20):6239-6254
    Chen GY,Sun DS,Zhang L,Zang WS,Wang J and Lu AH.1987.Morphogenesis of pyrite.Geoscience,1(1):60-76(in Chinese with English abstract)
    de Leeuw NH,Parker SC,Sithole HM and Ngoepe PE.2000.Modeling the surface structure and reactivity of pyrite:Introducing a potential model for Fe S2.The Journal of Physical Chemistry B,104(33):7969-7976
    Dos Santos EC,de Mendon9a Silva JC and Duarte HA.2016.Pyrite oxidation mechanism by oxygen in aqueous medium.The Journal of Physical Chemistry C,120(5):2760-2768
    Eggleston CM,Ehrhardt JJ and Stumm W.1996.Surface structural controls on pyrite oxidation kinetics:An XPS-UPS,STM,and modeling study.American Mineralogist,81(9-10):1036-1056
    Elsetinow AR,Guevremont JM,Strongin DR,Schoonen MAA and Strongin M.2000.Oxidation of{100}and{111}surfaces of pyrite:Effects of preparation method.American Mineralogist,85(3-4):623-626
    Guevremont JM,Elseinow AR,Strongin DR,Bebie J and Schoonen MAA.1998.Structure sensitivity of pyrite oxidation:Comparison of the(100)and(111)planes.American Mineralogist,83(11-12):1353-1356
    Hammack RW and Watzlaf GR.1990.The effect of oxygen on pyrite oxidation.In:Proceedings of 1990 Mining and Reclamation Conference and Exhibition.Charleston:West Virginia University,257-264
    Hung A,Muscat J,Yarovsky I and Russo SP.2002a.Density-functional theory studies of pyrite Fe S2(111)and(210)surfaces.Surface Science,520(1-2):111-119
    Hung A,Muscat J,Yarovsky I and Russo SP.2002b.Density-functional theory studies of pyrite Fe S2(100)and(110)surfaces.Surface Science,513(3):511-524
    Hurtgen MT.2012.The marine sulfur cycle,revisited.Science,337(6092):305-306
    Jerz JK and Rimstidt JD.2004.Pyrite oxidation in moist air.Geochimica et Cosmochimica Acta,68(4):701-714
    Kohl I and Bao HM.2011.Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation(pH=2~11).Geochimica et Cosmochimica Acta,75(7):1785-1798
    Morth AH and Smith EE.1966.Kinetics of the sulfide-to-sulfate reaction.Am.Chem.Soc.Div.Fuel Chem.,10:83-92
    Murowchick JB.1985.The formation and growth of pyrite,marcasite,and cubic ferrous sulfide.The Pennsylvania State University
    Nesbitt HW and Muir IJ.1994.X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air.Geochimica et Cosmochimica Acta,58(21):4667-4679
    Nicholson RV,Gillham RW and Reardon EJ.1988.Pyrite oxidation in carbonate-buffered solution.Geochim.Cosmochim.Acta,52:1077-1085
    Nordstrom DK and Southam G.1997.Geomicrobiology of sulfide mineral oxidation.Reviews in Mineralogy,35:381-390
    Osborne OD,Pring A and Lenehan CE.2010.A simple colorimetric FIAmethod for the determination of pyrite oxidation rates.Talanta,82(5):1809-1813
    Ouyang YT,Liu Y,Zhu RL,Ge F,Xu TY,Luo Z and Liang LB.2015.Pyrite oxidation inhibition by organosilane coatings for acid mine drainage control.Minerals Engineering,72:57-64
    Powell CJ,Jablonski A and Salvat F.2005.NIST databases with electron elastic-scattering cross sections,inelastic mean free paths,and effective attenuation lengths.Surface and Interface Analysis,37(11):1068-1071
    Putnis A.2014.Why mineral interfaces matter.Science,343(6178):1441-1442
    Qiu GZ,Xiao Q,Hu YH,Qin WQ and Wang DZ.2004.Theoretical study of the surface energy and electronic structure of pyrite Fe S2(100)using a total-energy pseudopotential method,CASTEP.Journal of Colloid and Interface Science,270(1):127-132
    Rickard D,Mussmann M and Steadman JA.2017.Sedimentary sulfides.Elements,13(2):117-122
    Rimstidt JD and Vaughan DJ.2003.Pyrite oxidation:A state-of-the-art assessment of the reaction mechanism.Geochimica et Cosmochimica Acta,67(5):873-880
    Rogowski AS and Pionke HB.1984.Hydrology and Water Quality on Strip-mined Lands.U.S.Environmental Protection Agency
    Rosso KM.2001.Structure and reactivity of semiconducting mineral surfaces:Convergence of molecular modeling and experiment.Reviews in Mineralogy and Geochemistry,42(1):199-271
    Sit PHL,Cohen MH and Selloni A.2012.Interaction of oxygen and water with the(100)surface of pyrite:Mechanism of sulfur oxidation.The Journal of Physical Chemistry Letters,3(17):2409-2414
    Somorjai GA.1991.Chemistry in Two Dimensions:Surfaces.In:Zhen KJ,Yang H,Mao WQ,Wu ZY,Wang GJ,Cui XH,Guo CX,Wu TH,Bi YL,Li MX and Ji YS(Trans.).Changchun:Jilin University Press(in Chinese)
    Stirling A,Bernasconi M and Parrinello M.2003.Ab initio simulation of water interaction with the(100)surface of pyrite.The Journal of Chemical Physics,118(19):8917
    Sun HY,Chen M,Zou LC,Shu RB and Ruan RM.2015.Study of the kinetics of pyrite oxidation under controlled redox potential.Hydrometallurgy,155:13-19
    Sun RS,Chan MKY and Ceder G.2011.First-principles electronic structure and relative stability of pyrite and marcasite:Implications for photovoltaic performance.Physical Review B,83(23):235311
    Sunagawa I.1957.Variation in crystal habit of pyrite.Report of Geological Survey of Japan,175:1-47
    Zhang YN,Hu J,Law M and Wu RQ.2012.Effect of surface stoichiometry on the band gap of the pyrite Fe S2(100)surface.Physical Review B,85(8):085314
    Zhao ZH,Zhang P,Chen YH,Yao Y,Wu YJ,Geng XH and Deng XZ.2010.Study on oxidation of pyrite by in situ absorption spectroscopy.Spectroscopy and Spectral Analysis,30(12):3375-3378
    Zhu JX,Xian HY,Lin XJ,Tang HM,Du RX,Yang YP,Zhu RL,Liang XL,Wei JM,Teng HH and He HP.2018.Surface structuredependent pyrite oxidation in relatively dry and moist air:Implications for the reaction mechanism and sulfur evolution.Geochimica et Cosmochimica Acta,228:259-274
    蔡元吉.1990.黄铁矿晶体形态模拟实验研究.中国地质科学院南京地质矿产研究所所刊,11(2):33-45
    陈光远,孙岱生,张立,臧维生,王健,鲁安怀.1987.黄铁矿成因形态学.现代地质,1(1):60-76
    索莫杰GA.1991.二维表面化学.见:甄开吉,杨洪,茂魏诠,吴志芸,王国甲,崔相浩,郭纯孝,吴通好,毕颖丽,李敏学,稽玉书译.长春:吉林大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700