用户名: 密码: 验证码:
Ag-Sn-In合金粉末高压氧化机制的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Powder High-Pressure Oxidation Mechanism of Ag-Sn-In Alloy
  • 作者:徐晓燕 ; 李波 ; 黄锡文 ; 刘心宇 ; 袁昌来 ; 黄兴隆
  • 英文作者:Xu Xiaoyan;Li Bo;Huang Xiwen;Liu Xinyu;Yuan Changlai;Huang Xinglong;School of Material Science and Engineering,Guilin University of Electronic Technology;Guilin Electrical Equipment Scientific Research Institute Co.Ltd.;School of Material Science and Engineering,Central South University;
  • 关键词:Ag-Sn-In合金粉末 ; 氧化 ; 偏析
  • 英文关键词:Ag-Sn-In compound powder;;oxidation;;segregation
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:桂林电子科技大学材料科学与工程学院;桂林电器科学研究院有限公司;中南大学材料科学与工程学院;
  • 出版日期:2018-03-27 16:34
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.274
  • 基金:广西自然科学基金(2016JJA160091)资助
  • 语种:中文;
  • 页:ZXJS201901013
  • 页数:6
  • CN:01
  • ISSN:11-2111/TF
  • 分类号:105-110
摘要
采用雾化法制备了Ag-8 Sn-3.7 In(%,质量分数)合金粉末。分别研究了氧气压力、氧化温度及氧化时间对Ag-8 Sn-3.7 In合金粉末氧化行为的影响规律。系统地分析了Ag-8 Sn-3.7 In合金粉末氧化前后的物相组成、粉末粒度、表面形貌及表面成分。研究结果表明:Ag·SnO_2·In_2O_3合金粉末高压氧化条件中,温度起决定性的作用,选择合适的氧化温度是该氧化工艺的关键。当温度不够高时,需要长时间才能达到完全氧化。氧气压力可以加快氧化的进程,当氧气压力达到0.75 MPa以后,增大氧气压力,意义不大。对三种不同氧化工艺得到的Ag·SnO_2·In_2O_3合金粉末进行成分分析,在氧化完全的条件下,氧化温度越高,其表面偏析现象越低。在Ag-Sn-In合金粉末高压氧化过程中,氧向合金粉末内部扩散, Sn和In向粉末表面扩散,与O_2反应分别形成SnO_2和In_2O_3,聚集在颗粒表面的SnO_2相和In_2O_3相在表面反应,形成表面2In_2O_3·3SnO_2壳层,阻碍了Sn原子的进一步扩散。对于Ag-8 Sn-3.7 In(%,质量分数)合金粉末,较好的氧化参数为:氧化温度500℃,氧气压力0.75 MPa,氧化时间2 h。
        Ag·8 Sn·3.7 In(%, mass fraction) compound powder was prepared with atomization method. The effects of oxidation stress, oxidation temperature and oxidation time on the oxidation behavior of Ag-8 Sn-3.7 In alloy powder were investigated. The phase composition, particle size and surface morphology of Ag-8 Sn-3.7 In compound powder before and after oxidation were systematically analyzed. It was shown that temperature played a key role in high pressure oxidation condition. The key to the oxidation process was to choose the appropriate oxidation temperature. It took a long time to achieve complete oxidation when the temperature was not high enough. Oxygen pressure could accelerate the process of oxidation. When oxygen pressure reached 0.75 MPa, it was not significant to increase the oxygen pressure. Composition analysis of Ag·SnO_2·In_2O_3 alloy powder obtained by three different oxidation processes was carried out. Under the condition of complete oxidation, the higher the oxidation temperature was, the lower the surface segregation was. In high oxidation process of Ag-Sn-In alloy powders, oxygen diffused internally while Sn and In diffused externally to react with oxygen atoms to form SnO_2 and In_2O_3 that formed 2 In_2O_3·3 SnO_2 shell, hindering Sn atoms further external diffusion. When the mixture proportion of Ag, Sn and In was 88.3∶8.0∶3.7, the best oxidation parameters were oxidation temperature of 500 ℃, oxidation time of 2 h and oxidative stress of 0.75 MPa.
引文
[1] Chen H D. Preparation of high performance Ag-SnO2 material and the electric property research [J]. Development and Application of Materials, 2012, 27(3): 19.(陈会东. 高性能Ag-SnO2材料的制备及其电寿命研究 [J]. 材料开发与应用, 2012, 27(3): 19.)
    [2] Cho Hoon Hwang, Duck Young Jo, Hyung Ho. A study on the development of environment-friendly Ag-SnO2 electric contact materials through a powder metallurgy [J]. Materials Science Forum, 2007, 539(4): 2761.
    [3] Rieder W, Weichsler V. Make erosion mechanism of Ag/CdO and Ag/SnO2 contacts [J]. IEEE Transactions on Components Hybrids and Manufacturing Technology, 1992, 15(3): 332.
    [4] Li B, Liu X Y, Huang X W. Effects of minor In addition on oxidation mechanism of Ag-Sn alloy powders [J]. Rare Metal Materials and Engineering, 2014, 43(8): 1964.(李波, 刘心宇, 黄锡文. 微量添加In对Ag-Sn合金粉末氧化机制的影响 [J]. 稀有金属材料与工程, 2014, 43(8): 1964.)
    [5] Leung C, Streicher E, Fitzgerald D, Cook J. Contact erosion of Ag/SnO2/In2O3 made by internal oxidation and powder metallurgy [A]. IEEE Holm Conference on. IEEE Xplore [C]. 2005. 22.
    [6] Frank Heringhaus, Jorg Beuers, Peter Braumann. On the optimization of the microstructure in powder metallurgical Ag-SnO2-In2O3 contact materials [J]. Zeitschrift fur Metallkunde, 2001, 92(7): 784.
    [7] Jie L I, Yan X, Bai X, Liu L, Suhua LI, Weng W. Effect of different in contents on hardness and microstructure of AgSnIn alloy during internal oxidation (electromechanical devices) [J]. Ieice Technical Report Emd., 2013, 113: 95.
    [8] Verma A, Anantharaman T R. Effect of indium concentration on the internal oxidation of a silver-tin alloy [J]. Bulletin of Materials Science, 1991, 14(1): 1.
    [9] Schimmel G, Rettenmayr M, Kempf B. Study on the microstructure of internally oxidized Ag-Sn-In alloys [J]. Oxidation of Metals, 2008, 70(1-2): 25.
    [10] Wu C P. Investigation on Oxidation Mechanism of Ag-Sn Alloy and High Temperature Plastic Deformation Behaviour of Ag-SnO2 Materials [D]. Changsha: Central South University, 2009.(吴春萍. Ag-Sn合金氧化机制与Ag-SnO2材料的高温塑性变形行为研究 [D]. 长沙: 中南大学, 2009.)
    [11] Igarashi T, Amano Y, Kodama Y. Behavior of solute elements and oxygen during internal oxidation of Ag-In-Sn alloys [J]. Journal of the Japan Institute of Metals, 1980, 44(5): 501.
    [12] Lee J W, Lee H C. Effects of tellurium addition on the internal oxidation of Ag-Sn alloys [J]. Scripta Materialia, 1999, 42(2): 169.
    [13] Tan G X, Qin X Z. Application of high-pressure oxidation in preparation of AgSnO2 electric contact materials [J]. Electrical Engineering Materials, 2004, (2): 11(谭光讯, 覃向忠. 高压氧化技术在制造AgSnO2电触头材料上的应用 [J]. 电工材料, 2004, (2): 11.)
    [14] Zhang A Z, Zhu Y X, Wang G X. Oxidation technology of high pressure [J]. Microelectronics and Computer, 1987, (7): 3.(张爱珍, 朱雅新, 王桂新. 高压氧化技术 [J]. 微电子学与计算机, 1987, (7): 3.)
    [15] Ohta M, Tian Z Y. New silver metal oxide contact material [J]. Electrical Engineering Materials, 1994, (1): 46.(Ohta M, 田朝阳. 新型银—金属氧化物触头材料 [J]. 电工材料, 1994, (1): 46.)
    [16] Yu Y N. Metallography Principle [M]. Beijing: Metallurgical Industry Press, 2013. 169.(余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2013. 169.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700