用户名: 密码: 验证码:
导电二维配位聚合物框架材料在能源存储及转化领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conductive Two-Dimensional Coordination Polymer Frameworks for Energy Conversion and Storage
  • 作者:姜恺悦 ; 杨重庆 ; 庄小东
  • 英文作者:JIANG Kaiyue;YANG Chongqing;ZHUANG Xiaodong;School of Chemistry and Chemical Engineering,Shanghai Jiao Tong University;
  • 关键词:二维 ; 配位聚合物框架 ; 导电性 ; 合成 ; 能源转化与存储
  • 英文关键词:two-dimensional;;coordination polymer framework;;conductivity;;synthesis;;energy conversion and storage
  • 中文刊名:GNGF
  • 英文刊名:Journal of Functional Polymers
  • 机构:上海交通大学化学化工学院;
  • 出版日期:2018-10-14 10:51
  • 出版单位:功能高分子学报
  • 年:2019
  • 期:v.32
  • 基金:自然科学基金优秀青年基金(51722304)
  • 语种:中文;
  • 页:GNGF201902006
  • 页数:23
  • CN:02
  • ISSN:31-1633/O6
  • 分类号:47-69
摘要
配位聚合物框架材料具有高的比表面积、丰富的孔结构和金属配位中心,一直以来被视为能源领域的潜在电极材料。传统配位聚合物框架材料电导率低,因此,如何设计并合成具有一定导电性的配位聚合物框架材料,满足能源及其相关领域对于材料电学性质的要求,成为配位聚合物框架材料领域的研究热点方向之一。本综述介绍了近年来导电二维配位聚合物框架材料的设计思路及电导率测量方法,并对这类材料的制备及其在能源转化及存储方面的应用进行了总结。最后,对二维高导电配位聚合物今后的研究和发展方向进行了展望。
        Coordination polymer frameworks are well-known as one kind of functional materials in many fields such as gas storage and separation,sensing,energy storage and conversion,etc.,due to their high specific surface areas(up to 7 000 m~2/g),porous structures as well as versatile metal centers.However,their potential applications in energy related areas have been hindered because most of them are electrical insulators(less than 10-10 S/cm).Therefore,rational design and synthesis of coordination polymer frameworks with good electrical conductivity has been rising as one of the hotspots for both scientific and industry communities.Due to the highest flexible connectivity compared to one-dimensional and threedimensional coordination polymers,two-dimensional(2D)coordination polymers are considered to be the most promising candidates with excellent electrical properties.In this review,the design principles and conductivity measurement methods for conductive coordination polymer frameworks are summarized.Then,the recent progress of conductive 2D coordination polymer frameworks and their application in the field of energy conversion and storage are reviewed.
引文
[1]LI J R,SCULLEY J,ZHOU H C.Metal-organic frameworks for separations[J].Chemical Reviews,2012,112(2):869-932.
    [2]SUMIDA K,ROGOW D L,MASON J A,et al.Carbon dioxide capture in metal-organic frameworks[J].Chemical Reviews,2012,112(2):724-781.
    [3]WU H,GONG Q,OLSON D H,et al.Commensurate sdsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J].Chemical Reviews,2012,112(2):836-868.
    [4]SUN L,CAMPBELL M G,DINCAM.Electrically conductive porous metal-organic frameworks[J].Angewandte Chemie International Edition,2016,55(11):3566-3579.
    [5]BRANDON N P,BRETT D J.Engineering porous materials for fuel cell applications[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2006,364(1838):147-159.
    [6]SIMON P,GOGOTSI Y.Materials for electrochemical capacitors[J].Nature Materials,2008,7:845-854.
    [7]BORCHARDT L,OSCHATZ M,KASKEL S.Tailoring porosity in carbon materials for supercapacitor applications[J].Materials Horizons,2014,1(2):157-168.
    [8]ALLENDORF M D,SCHWARTZBERG A,STAVILA V,et al.A roadmap to implementing metal-organic frameworks in electronic devices:Challenges and critical directions[J].Chemistry:A European Journal,2011,17(41):11372-11388.
    [9]KRENO L E,LEONG K,FARHA O K,et al.Metal-organic framework materials as chemical sensors[J].Chemical Reviews,2012,112(2):1105-1125.
    [10]BUBNOVA O,CRISPIN X.Towards polymer-based organic thermoelectric generators[J].Energy and Environmental Science,2012,5(11):9345-9362.
    [11]DINCAM,LEONARD F.Metal-organic frameworks for electronics and photonics[J].MRS Bulletin,2016,41(11):854-857.
    [12]LEONARD F,TALIN A A.Electrical contacts to one-and two-dimensional nanomaterials[J].Nature Nanotechnology,2011,6(12):773-783.
    [13]ZHUANG X,ZHANG F,WU D,et al.Two-dimensional sandwich-type,graphene-based conjugated microporous polymers[J].Angewandte Chemie International Edition,2013,125(37):9850-9854.
    [14]ZHUANG X,ZHANG F,WU D,et al.Graphene coupled Schiff-base porous polymers:Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity[J].Advanced Materials,2014,26(19):3081-3086.
    [15]ZHUANG X,GEHRIG D,FORLER N,et al.Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices[J].Advanced Materials,2015,27(25):3789-3796.
    [16]HENDON C H,TIANA D,WALSH A.Conductive metal-organic frameworks and networks:Fact or fantasy?[J].Physical Chemistry Chemical Physics,2012,14(38):13120-13132.
    [17]SUN L,CAMPBELL M G,DINCA M.Electrically conductive porous metal-organic frameworks[J].Angewandte Chemie International Edition,2016,55(11):3566-3579.
    [18]M’PEKO J C,RUIZ-SALVADOR A R,RODRIGUEZ-FUENTES G.Conductivity activation energy and analysis of the sintering process of dielectric ceramics[J].Materials Letters,1998,36(5/6):290-293.
    [19]TAKAISHI S,HOSODA M,KAJIWARA T,et al.Electroconductive porous coordination polymer Cu[Cu(pdt)]2composed of donor and acceptor building units[J].Inorganic Chemistry,2009,48(19):9048-9050.
    [20]KOBAYASHI Y,JACOBS B,ALLENDORF M D,et al.Conductivity,doping,and redox chemistry of a microporous dithiolene-based metal-organic framework[J].Chemistry of Materials,2010,22(14):4120-4122.
    [21]STALLINGA P.Electronic transport in organic materials:Comparison of band theory with percolation/(variable range)hopping theory[J].Advanced Materials,2011,23(30):3356-3362.
    [22]MOTT N F.Conduction in non-crystalline materials[J].The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics,1969,19(160):835-852.
    [23]HOFFMANN R.Interaction of orbitals through space and through bonds[J].Accounts of Chemical Research,1971,4(1):1-9.
    [24]NIE X,KULKARNI A,SHOLL D S.Computational prediction of metal organic frameworks suitable for molecular infiltration as a route to development of conductive materials[J].The Journal of Physical Chemistry Letters,2015,6(9):1586-1591.
    [25]TALIN A A,CENTRONE A,FORD A C,et al.Tunable electrical conductivity in metal-organic framework thin-film devices[J].Science,2014,343(6166):66-69.
    [26]TIWARI S,GREENHAM N C.Charge mobility measurement techniques in organic semiconductors[J].Optical and Quantum Electronics,2009,41(2):69-89.
    [27]SAEKI A,KOIZUMI Y,AIDA T,et al.Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules,macromolecules,and supramolecular architectures[J].Accounts of Chemical Research,2012,45(8):1193-1202.
    [28]SCHRODER D K.Semiconductor Material and Device Characterization[M].New York,USA:John Wiley&Sons Inc,2005:1-59.
    [29]SAEKI A,SEKI S,SUNAGAWA T,et al.Charge-carrier dynamics in polythiophene films studied by in-situ measurement of flash-photolysis time-resolved microwave conductivity(FP-TRMC)and transient optical spectroscopy(TOS)[J].Philosophical Magazine,2006,86(9):1261-1276.
    [30]KOKIL A,YANG K,KUMAR J.Techniques for characterization of charge carrier mobility in organic semiconductors[J].Journal of Polymer Science Part B:Polymer Physics,2012,50(15):1130-1144.
    [31]ARRHENIUS S.Uber die dissociationswarme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte[J].Zeitschrift Für Physikalische Chemie,2017,4(1):96-116.
    [32]GROSSO G,PARRAVICINI G P.Solid State Physics[M].2nd ed.Holland,Amsterdam:Academic Press,2014:577-608.
    [33]BREDAS J L.Mind the gap![J].Materials Horizons,2014,1(1):17-19.
    [34]HIJIKATA Y,HORIKE S,SUGIMOTO M,et al.Pore design of two-dimensional coordination polymers toward selective adsorption[J].Inorganic Chemistry,2013,52(7):3634-3642.
    [35]ZHANG H.Ultrathin two-dimensional nanomaterials[J].ACS Nano,2015,9(10):9451-9469.
    [36]JEON I R,NEGRU B,van DUYNE R P,et al.A 2Dsemiquinone radical-containing microporous magnet with solventinduced switching fromTc=26to 80K[J].Journal of the American Chemical Society,2015,137(50):15699-15702.
    [37]DEGAYNER J A,JEON I R,SUN L,et al.2D Conductive iron-quinoid magnets ordering up to Tc=105 K via heterogenous redox chemistry[J].Journal of the American Chemical Society,2017,139(11):4175-4184.
    [38]WILLIAMS J M,SCHULTZ A J,GEISER U,et al.Organic superconductors-new benchmarks[J].Science,1991,252(5012):1501-1508.
    [39]AMO-OCHOA P,WELTE L,GONZALEZ-PRIETO R,et al.Single layers of a multifunctional laminar Cu(Ⅰ,Ⅱ)coordination polymer[J].Chemical Communications,2010,46(19):3262-3264.
    [40]BRYCE M R.Recent progress on conducting organic charge-transfer salts[J].Chemical Society Reviews,1991,20(3):355-390.
    [41]ZHAO Y,HONG M,LIANG Y,et al.A paramagnetic lamellar polymer with a high semiconductivity[J].Chemical Communications,2001(11):1020-1021.
    [42]SU W,HONG M,WENG J,et al.A semiconducting lamella polymer[{Ag(C5H4NS)}n]with a graphite-like array of silver(Ⅰ)ions and its analogue with a layered structure[J].Angewandte Chemie International Edition,2000,39(16):2911-2914.
    [43]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [44]GUTZLER R,PEREPICHKA D F.π-Electron conjugation in two dimensions[J].Journal of the American Chemical Society,2013,135(44):16585-16594.
    [45]LIU X H,GUAN C Z,WANG D,et al.Graphene-like single-layered covalent organic frameworks:Synthesis strategies and application prospects[J].Advanced Materials,2014,26(40):6912-6920.
    [46]WANG C,LIU D,LIN W.Metal-organic frameworks as a tunable platform for designing functional molecular materials[J].Journal of the American Chemical Society,2013,135(36):13222-13234.
    [47]GUO J,XU Y,JIN S,et al.Conjugated organic framework with three-dimensionally ordered stable structure and delocalizedπclouds[J].Nature Communications,2013,4:2736.
    [48]KAMBE T,SAKAMOTO R,HOSHIKO K,et al.π-Conjugated nickel bis(dithiolene)complex nanosheet[J].Journal of the American Chemical Society,2013,135(7):2462-2465.
    [49]KAMBE T,SAKAMOTO R,KUSAMOTO T,et al.Redox control and high conductivity of nickel bis(dithiolene)complexπ-nanosheet:A potential organic two-dimensional topological insulator[J].Journal of the American Chemical Society,2014,136(41):14357-14360.
    [50]CAMPBELL M G,SHEBERLA D,LIU S F,et al.Cu3(hexaiminotriphenylene)2:An electrically conductive 2Dmetalorganic framework for chemiresistive sensing[J].Angewandte Chemie,2015,127(14):4423-4426.
    [51]HMADEH M,LU Z,LIU Z,et al.New porous crystals of extended metal-catecholates[J].Chemistry of Materials,2012,24(18):3511-3513.
    [52]NAGATOMI H,YANAI N,YAMADA T,et al.Synthesis and electric properties of a two-dimensional metal-organic framework based on phthalocyanine[J].Chemistry:A European Journal,2018,24(8):1806-1810.
    [53]PAL T,KAMBE T,KUSAMOTO T,et al.Interfacial synthesis of electrically conducting palladium bis(dithiolene)complex nanosheet[J].Chempluschem,2015,80(8):1255-1258.
    [54]CLOUGH A J,YOO J W,MECKLENBURG M H,et al.Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water[J].Journal of the American Chemical Society,2015,137(1):118-121.
    [55]HUANG X,SHENG P,TU Z,et al.A two-dimensionalπ-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour[J].Nature Communications,2015,6:7408.
    [56]CUI J,XU Z.An electroactive porous network from covalent metal-dithiolene links[J].Chemical Communications,2014,50(30):3986-3988.
    [57]CLOUGH A J,SKELTON J M,DOWNES C A,et al.Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework[J].Journal of the American Chemical Society,2017,139(31):10863-10867.
    [58]SHEBERLA D,SUN L,BLOOD-FORSYTHE M A,et al.High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2,a semiconducting metal-organic graphene analogue[J].Journal of the American Chemical Society,2014,136(25):8859-8862.
    [59]CAMPBELL M G,SHEBERLA D,LIU S F,et al.Cu3(hexaiminotriphenylene)2:An electrically conductive 2Dmetalorganic framework for chemiresistive sensing[J].Angewandte Chemie International Edition,2015,54(14):4349-4352.
    [60]WU G,HUANG J,ZANG Y,et al.Porous field-effect transistors based on a semiconductive metal-organic framework[J].Journal of the American Chemical Society,2017,139(4):1360-1363.
    [61]DOU J H,SUN L,GE Y,et al.Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2(M=Ni,Cu)[J].Journal of the American Chemical Society,2017,139(39):13608-13611.
    [62]LAHIRI N,LOTFIZADEH N,TSUCHIKAWA R,et al.Hexaaminobenzene as a building block for a family of 2Dcoordination polymers[J].Journal of the American Chemical Society,2017,139(1):19-22.
    [63]LI W,SUN L,QI J,et al.High temperature ferromagnetism inπ-conjugated two-dimensional metal-organic frameworks[J].Chemical Science,2017,8(4):2859-2867.
    [64]WANG H,ZHU Q L,ZOU R,et al.Metal-organic frameworks for energy applications[J].Chem,2017,2(1):52-80.
    [65]XU G,NIE P,DOU H,et al.Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J].Materials Today,2017,20(4):191-209.
    [66]CHOI K M,JEONG H M,PARK J H,et al.Supercapacitors of nanocrystalline metal-organic frameworks[J].ACSNano,2014,8(7):7451-7457.
    [67]ZHENG F,YANG Y,CHEN Q.High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J].Nature Communications,2014,5:5261.
    [68]MORALES-GUIO C G,STERN L A,HU X.Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J].Chemical Society Reviews,2014,43(18):6555-6569.
    [69]SELLMANN D,GECK M,MOLL M.Transition-metal complexes with sulfur ligands:62.Hydrogen evolution upon reaction of protons with sulfur-coordinated Fe(Ⅱ)complexes.Investigation of the H+,H2and H-interactions with iron1,2-benzenedithiolate complexes[J].Journal of the American Chemical Society,1991,113(14):5259-5264.
    [70]DONG R,PFEFFERMANN M,LIANG H,et al.Large-area,free-standing,two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution[J].Angewandte Chemie International Edition,2015,54(41):12058-12063.
    [71]ZOU X,HUANG X,GOSWAMI A,et al.Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values[J].Angewandte Chemie International Edition,2014,53(17):4372-4376.
    [72]XIE J,ZHANG H,LI S,et al.Defect-rich MoS2ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J].Advanced Materials,2013,25(40):5807-5813.
    [73]VOIRY D,YAMAGUCHI H,LI J,et al.Enhanced catalytic activity in strained chemically exfoliated WS2nanosheets for hydrogen evolution[J].Nature Materials,2013,12:850-855.
    [74]SOLIS B H,HAMMES-SCHIFFER S.Computational study of anomalous reduction potentials for hydrogen evolution catalyzed by cobalt dithiolene complexes[J].Journal of the American Chemical Society,2012,134(37):15253-15256.
    [75]DONG R,ZHENG Z,TRANCA D C,et al.Immobilizing molecular metal dithiolene-diamine complexes on 2D metalorganic frameworks for electrocatalytic H2production[J].Chemistry:A European Journal,2017,23(10):2255-2260.
    [76]JIA H,YAO Y,ZHAO J,et al.A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis[J].Journal of Materials Chemistry A,2018,6(3):1188-1195.
    [77]STEELE B C H,HEINZEL A.Materials for fuel-cell technologies[J].Nature,2001,414(6861):345-352.
    [78]JASINSKI R.A new fuel cell cathode catalyst[J].Nature,1964,201(4925):1212-1213.
    [79]MINER E M,FUKUSHIMA T,SHEBERLA D,et al.Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2[J].Nature Communications,2016,7:10942.
    [80]WINTER M,BRODD R J.What are batteries,fuel cells,and supercapacitors?[J].Chemical Reviews,2004,104(10):4245-4269.
    [81]张涛,王文强,王庚超.基于活化多孔碳负载聚苯胺正极和活化多孔碳负极的有机非对称超级电容器[J].功能高分子学报,2016,29(3):296-304.
    [82]SHEBERLA D,BACHMAN J C,ELIAS J S,et al.Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J].Nature Materials,2017,16(2):220-224.
    [83]YANG C,SCHELLHAMMER K S,ORTMANN F,et al.Coordination polymer framework-based on-chip microsupercapacitors with AC line-filtering performance[J].Angewandte Chemie International Edition,2017,56(14):3920-3924.
    [84]FENG D,LEI T,LUKATSKAYA M R,et al.Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J].Nature Energy,2018,3(1):30-36.
    [85]MAITI S,PRAMANIK A,MANJU U,et al.Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance[J].ACS Applied Materials and Interfaces,2015,7(30):16357-16363.
    [86]周浩浩,曹慧群,周莉,等.多孔载药n-HA/PEEK/CS复合材料的制备与性能[J].功能高分子学报,2018,31(3):267-272.
    [87]李京民,陆学民,路庆华.手性多孔嵌段共聚物薄膜诱导手性金纳米粒子的手性组装[J].功能高分子学报,2018,31(2):108-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700