用户名: 密码: 验证码:
钛合金植入物梯度孔结构设计及其力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gradient Pore Structure Design and Mechanical Properties of Titanium Alloy Implant
  • 作者:石志良 ; 卢小龙 ; 黄琛 ; 李锋 ; 孙允龙
  • 英文作者:Shi Zhiliang;Lu Xiaolong;Huang Chen;Li Feng;Sun Yunlong;Wuhan University of Technology;Tongji Medical College,Huazhong University of Science & Technology;
  • 关键词:增材制造 ; 梯度多孔结构 ; 计算机辅助设计 ; 植入物 ; 力学性能
  • 英文关键词:additive manufacturing;;gradient pore structure;;computer-aided design;;implant;;mechanical properties
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:武汉理工大学;华中科技大学同济医学院;
  • 出版日期:2019-06-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.395
  • 基金:国家重点基础研究发展计划(“973”计划)(2016YFB1101300)
  • 语种:中文;
  • 页:COSE201906017
  • 页数:6
  • CN:06
  • ISSN:61-1154/TG
  • 分类号:117-122
摘要
植入物多孔结构的设计多以规则孔结构为主,而少有针对梯度孔结构的设计。本文提出平面center及空间sphere 2种梯度圆孔设计方法,实现对某一平面center梯度孔结构植入物的设计,采用激光选区熔化技术(selective laser melting, SLM)制备出孔隙率为75%的医用钛合金Ti6Al4V梯度孔与规则孔结构植入物样件,进行微观材料表征和力学性能测试,得到相关力学数据。结果表明:该种梯度孔结构的力学性能优于规则孔,在孔隙率为75%的条件下,梯度孔样件的平均弹性模量较规则孔高36.25%,平均抗压强度提高29.9%。
        For the design of pore structure of titanium alloy implants, most of the current researches were on regular pore structures, while few of them were concerned with the design of gradient pore structures. In this research, two methods of designing circular pores with Planar Center Gradient and Spatial Sphere Gradient were proposed. On this basis, a certain model design of Planar Center Gradient was completed. Some samples of titanium alloy gradient pore and regular pore structure implants with a porosity of 75% were fabricated by selective laser melting(SLM), and microscopic material characterization was performed. Through the test of mechanical properties, the related mechanical data were obtained. The result shows that the mechanical properties of the gradient pore structure are better than those of regular pores. Under the condition of porosity of 75%, the average elastic modulus of gradient pore sample is 36.25% higher than that of regular pore and the average compressive strength is increased by 29.9%.
引文
[1]Hu Haibo(胡海波),Liu Huiqun(刘会群),Wang Jie’en(王杰恩)et al.Materials Review(材料导报)[J],2012(S1):262
    [2]Fujibayashi S,Neo M,Kim H M et al.Biomaterials[J],2004,25(3):443
    [3]Dabrowski B,Swieszkowski W,Godlinski D et al.Journal of Biomedical Materials Research Part B Applied Biomaterials[J],2010,95B(1):53
    [4]Wauthle R,Ahmadi S M,Amin Y S et al.Materials Science&Engineering C[J],2015,54:94
    [5]Hedayati R,Janbaz S,Sadighi M et al.J Mech Behav Biomed Mater[J],2016,65:831
    [6]Wang Jianfei(王健飞),Chen Changjun(陈长军),Wang Xiaonan(王晓南)et al.Journal of Mechanical Engineering(机械工程学报)[J],2016,52(21):206
    [7]Gómez S,Vlad M D,López J et al.Acta Biomaterialia[J],2016,42:341
    [8]You Fei(尤飞),Yao Yuan(姚远),Hu Qingxi(胡庆夕).Journal of Mechanical Engineering(机械工程学报)[J],2011,47(1):138
    [9]Sobral J M,Caridade S G,Sousa R A et al.Acta Biomaterialia[J],2011,7(3):1009
    [10]Li Hu(李虎),Yang Jianyu(杨建宇),Su Pengcheng(苏鹏程)et al.Journal of Central South University(中南大学学报)[J],2012,19(12):3492
    [11]Boccaccio A,Uva A E,Fiorentino M et al.Plos One[J],2016,11(1):146 935
    [12]Qi Liuju(戚留举),Li Zifu(李子夫),Zhang Chunyu(张春雨)et al.Machinery(机械)[J],2014(5):70
    [13]Fukuda A,Takemoto M,Saito T et al.Acta Biomaterialia[J],2011,7(5):2327
    [14]Van B S,Chai Y C,Truscello S et al.Acta Biomaterialia[J],2012,8(7):2824

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700