用户名: 密码: 验证码:
SiO_2和Al_2O_3负载的Ni基催化剂在甲烷干重整中的催化性能差异(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A comparison of Al_2O_3 and SiO_2 supported Ni-based catalysts in their performance for the dry reforming of methane
  • 作者:徐艳 ; 堵锡华 ; 李靖 ; 王鹏 ; 朱捷 ; 葛奉娟 ; 周俊 ; 宋明 ; 朱文友
  • 英文作者:XU Yan;DU Xi-hua;LI Jing;WANG Peng;ZHU Jie;GE Feng-juan;ZHOU Jun;SONG Ming;ZHU Wen-you;School of Chemistry and Chemical Engineering,Xuzhou University of Technology;
  • 关键词:甲烷 ; 干重整 ; 镍基催化剂 ; 构效关系 ; 载体效应 ; Ni/Al2O3 ; Ni/SiO2
  • 英文关键词:methane;;dry reforming;;nickel-based catalyst;;structure-activity relationship;;support effect;;Ni/Al2O3;;Ni/SiO2
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:徐州工程学院化学化工学院;
  • 出版日期:2019-02-26 10:18
  • 出版单位:燃料化学学报
  • 年:2019
  • 期:v.47
  • 基金:supported by the National Natural Science Foundation of China(21703194);; the Natural Science Foundation of Jiangsu Province(BK20171168,BK20171169);; Natural Science Foundation of Jiangsu Higher Education Institutions of China(17KJB530010,17KJB150038 and18KJA430015);; Key Research Project of Social Development of Xuzhou(KC17154);; Research Project of Xuzhou University of Technology(XKY2017217)
  • 语种:英文;
  • 页:RLHX201902009
  • 页数:10
  • CN:02
  • ISSN:14-1140/TQ
  • 分类号:82-91
摘要
CH4与CO_2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO_2和Al_2O_3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al_2O_3和Ni/SiO_2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO_2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15 h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO_2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al_2O_3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al_2O_3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50 h其活性保持稳定; Ni与Al_2O_3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。
        Dry reforming of methane( DRM) with CO_2 is of great significance in the environmental protection and the utilization of natural gas. SiO_2 and Al_2 O_3 are two typical catalyst supports used in DRM. To elucidate the effect of these two supports on the catalytic performance,in this work,Ni/SiO_2 and Ni/Al_2 O_3 catalysts are prepared by the incipient wetness method and characterized by BET,TEM,H2-TPR,XRD,TG and Raman technologies. The results indicate that the performance of Ni-based catalyst is closely related to the properties of support and the Ni/SiO_2 and Ni/Al_2 O_3 catalysts are rather different in their DRM performance.Ni/SiO_2 catalyst exhibits higher initial activity but poor stability; its catalytic activity decreases rapidly in 15 h for DRM at 800 ℃.Because of the weak metal-support interaction,Ni species on the Ni/SiO_2 catalyst is present as large Ni particles,which may promote the formation of coke precursors,viz.,the multi-carbon Cn species,leading to the fast carbonaceous deposition and catalyst deactivation. In contrast,the Ni/Al_2 O_3 catalyst displays a lower activity but a much higher stability; its activity in DRM keeps stable in 50 h. Although Ni particles in the Ni/Al_2 O_3 catalyst is much smaller,the strong metal-support interaction promotes the formation of NiAlxOy species during the catalyst preparation process,which may lead to a decrease in the content of active Ni species and give the Ni/Al_2 O_3 catalyst a relatively low catalytic activity in DRM; however,the strong metal-support interaction between Ni and Al_2 O_3 is also of benefit to the formation and stabilization of small Ni particles,which can alleviate the carbanceous deposition and afford the Ni/Al_2 O_3 catalyst a better stability.
引文
[1] CABALLERO A,PEREZ P J. Methane as raw material in synthetic chemistry:The final frontier[J]. Chem Soc Rev,2013,42(23):8809-8820.
    [2] OLSBYE U. Single-pass catalytic conversion of syngas into olefins via methanol[J]. Angew Chem Int Ed,2016,55(26):7294-7295.
    [3] VENVIK H J,YANG J. Catalysis in microstructured reactors:Short review on small-scale syngas production and further conversion into methanol,DME and Fischer-Tropsch products[J]. Catal Today,2017,285:135-146.
    [4] ALI K A,ABDULLAH A Z,MOHAMED A R. Recent development in catalytic technologies for methanol synthesis from renewable sources:A critical review[J]. Renewable Sustainable Energy Rev,2015,44(32):508-518.
    [5] HU J,YU F,LU Y. Application of Fischer-Tropsch synthesis in biomass to liquid conversion[J]. Catalysts,2012,2(2):303-326.
    [6] USMAN M,DAUD W M A W,ABBAS H F. Application of Fischer-Tropsch synthesis in biomass to liquid conversion[J]. Renewable Sustainable Energy Rev,2015,45:710-744.
    [7] SHAH Y T,GARDNER T H. Dry reforming of hydrocarbon feedstocks[J]. Catal Rev,2014,56(4):476-536.
    [8] MURAZA O,GALADIMA A. A review on coke management during dry reforming of methane[J]. Int J Energy Res,2015,39(9):1196-1216.
    [9] ABDULLAH B,GHANI N A A,VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod,2017,162:170-185.
    [10] ZHANG X,YANG C,ZHANG Y,XU Y,SHANG S,YIN Y. Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane[J]. Int J Hydrogen Energy,2015,40(46):16115-16126.
    [11] DAS S,ASHOK J,BIAN Z,DEWANGAN N,WAI M H,DU Y,BORGNA A,HIDAJAT K,KAWI S. Silica-ceria sandwiched ni coreshell catalyst for low temperature dry reforming of biogas:Coke resistance and mechanistic insights[J]. Appl Catal B:Environ,2018,230:220-236.
    [12] DAI C,ZHANG S,ZHANG A,SONG C,SHI C,GUO X. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. J Mater Chem A,2015,3(32):16461-16468.
    [13] WANG C Z,SI L J,LI H,WEN X,SUN N N,ZHAO N,WEI W,SUN Y H. Template-free one-pot synthesis of mesoporous Ni-CaOZrO2catalyst and its application in CH4-CO2 reforming[J]. J Fuel Chem Technol,2013,41(10):1204-1209.
    [14] WANG C Z,SUN N N,ZHAO N,WEI W,ZHAO Y X. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane[J]. Catal Today,2017,281:268-275.
    [15] WANG C Z,SUN N N,ZHAO N,WEI W,SUN Y H,SUN C G,LIU H,SNAPE C E. Coking and deactivation of a mesoporous Ni-CaOZrO2catalyst in dry reforming of methane:A study under different feeding compositions[J]. Fuel,2015,143:527-535.
    [16] HUANG X,JI C,WANG C Z,XIAO F K,ZHAO N,SUN N N,WEI W,SUN Y H. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today,2017,281:241-249.
    [17] HUANG X,XUE G X,WANG C Z,ZHAO N,SUN N N,WEI W,SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts forCO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol,2016,6:449-459.
    [18] WANG C Z,QIU Y,ZHANG X M,ZHANG Y,SUN N N,ZHAO Y X. Geometric art of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability:Enhanced confinement effect over nickel site anchoring inside capsule shell with appropriate inner cavity[J].Catal Sci Technol,2018,8:4877-4890.
    [19] YANG W W,LIU H M,LI Y M,ZHANG J,WU H,HE D H. Properties of yolk-shell structured Ni@SiO2 nanocatalyst and its catalytic performance in carbon dioxide reforming of methane to syngas[J]. Catal Today,2016,259:438-445.
    [20] DAS S,ASHOK J,BIAN Z,DEWANGAN N,WAI M H,DU Y,BORGNA A,HIDAJAT K,KAWI S. Silica-ceria sandwiched ni coreshell catalyst for low temperature dry reforming of biogas:Coke resistance and mechanistic insights[J]. Appl Catal B:Environ,2018,230:220-236.
    [21] WANG Y S,FANG Q,SHEN W H,ZHU Z Q,FANG Y J.(Ni/MgAl2O4)@SiO2 core-shell catalyst with high coke-resistance for the dry reforming of methane[J]. React Kinet Mech Catal,2018,125(1):127-139.
    [22] PU J L,LUO Y,WANG N N,BAO H X,WANG X H,QIAN E W. Ceria-promoted Ni@Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance[J]. Int J Hydrogen Energy,2018,43(6):3142-3153.
    [23] CHAI Y,FU Y,FENG H,KONG W,YUAN C,PAN B,ZHANG J,SUN Y. Ni-based perovskite catalyst with a bimodal size distribution of Ni Particles for dry reforming of methane[J]. ChemCatChem,2018,9(10):2078-2086.
    [24] BAUDOUIN D,RODEMERCK U,KRUMEICH F,MALLMANN A D,SZETO K C,MNARD H,YEYRE L,CANDY J P,WEBB P B,THIEULEUX C,COPRET C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles[J]. J Catal,2013,297(1):27-34.
    [25] GONZALEZDELACRUZ V M,PEREIGUEZ R,TERNERO F,HOLGADO J P,CABALLERO A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts[J]. ACS Catal,2013,1(2):82-88.
    [26] DAOURA O,KAYDOUH M N,EI-HASSAN N,MASSIANI P,LAUNAY F,BOUTROS M. Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 by CO2[J]. J CO2 Util,2018,24:112-119.
    [27] KIM W Y,LEE Y H,PARK H,CHOI Y H,LEE M H,LEE J S. Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane[J]. Catal Sci Technol,2016,6(7):2060-2064.
    [28] AL-FATESH A S,ARAFAT Y,ATIA H,IBRAHIM A A,HA Q L M,SCHNEIDER M,M-POHL M,FAKEEHS A H. CO2 reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst:Effect of support modifiers(Mg,La and Sc)on catalytic stability[J]. J CO2 Util,2017,21:395-404.
    [29] MO W,MA F,LIU Y,LIU J,ZHONG M,NULAHONG A. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int J Hydrogen Energy,2015,40(46):16147-16158.
    [30] JEONG M G,KIM S Y,KIM D H,HAN S W,KIM I H,LEE M,HWANG Y K,KIM Y D. High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO2 reforming of methane(CRM)[J]. Appl Catal A:Gen,2016,515:45-50.
    [31] ZENG S,ZHANG X,FU X,ZHANG L,SU H,PAN H. Co/Cex Zr1-x O2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane[J]. Appl Catal B:Environ,2013,136-137:308-316.
    [32] SAHA B,KHAN A,IBRAHIM H,IDEM R. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas[J]. Fuel,2014,120(1):202-217.
    [33] CHEN X,JIANG J,TIAN S,LI K. Biogas dry reforming for syngas production:Catalytic performance of nickel supported on waste-derived SiO2[J]. Catal Sci Technol,2015,5(2):860-868.
    [34] SUN G B,HIDAJAT K,WU X S,KAWI S. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts[J]. Appl Catal B:Environ,2008,81(3):303-312.
    [35] OEMAR U,KATHIRASER Y,MO L,HO X K,KAWI S. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts:Mechanism and kinetic modelling[J]. Catal Sci Technol,2016,6(4):1173-1186.
    [36] GOULA M A,CHARISIOU N D,PAPAGERIDIS K N,DELIMITIS A,PACHATOURIDOU E,ILIOPOULOU E F. Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction:Influence of the synthesis method[J]. Int J Hydrogen Energy,2015,40(30):9183-9200.
    [37] LI Z,KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4:Influence of Ni precursors on structure,sintering and carbon resistance[J]. Catal Sci Technol,2018,8(7):1915-1922.
    [38] ZHANG C,YUE H,HUANG Z,LI S,WU G,MA X,GONG J. Hydrogen production via steam reforming of ethanol on phyllosilicatederived Ni/SiO2:Enhanced metal-support interaction and catalytic stability[J]. ACS Sustainable Chem Eng,2013,1(1):161-173.
    [39] LIU C J,YE J Y,JIANG J J,PAN Y X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem,2011,3(3):529-541.
    [40] NUMAGUCHI T,EIDA H,SHOJI K. Reduction of NiAl2O4 containing catalysts for steam methane reforming reaction[J]. Int J Hydrogen Energy,1997,22(12):1111-1115.
    [41] YANG M,JIN P,FAN Y,HUANG C,ZHANG N,WENG W,CHEN M,WAN H. Ammonia-assisted synthesis towards a phyllosilicatederived high-dispersed and long-lived Ni/SiO2 catalyst[J]. Catal Sci Technol,2015,5(12):5095-5099.
    [42] WO H,DEARN K D,SONG R,HU E,XU Y,HU X. Morphology,composition and structure of carbon deposits from diesel and biomass oil/diesel blends on a pintle-type fuel injector nozzle[J]. Tribol Int,2015,91:189-196.
    [43] ALEKSANDROV H A,PEGIOS N,PALKOVITS R,SIMENONV K,VAYSSILOV G N. Elucidation of the higher coking resistance of small versus large nickel nanoparticles in methane dry reforming via computational modeling[J]. Catal Sci Technol,2017,7(15):3339-3347.
    [44] WANG C Z,SUN N N,ZHAO N,WEI W,ZHANG J,ZHAO T J,SUN Y H,SUN C G,LIU H,SNAPE C E. The properties ofindividual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem,2014,6(2):640-648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700