用户名: 密码: 验证码:
鲕粒碳酸盐岩溶蚀的微观形貌特征实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface micromorphology of dissoluted oolitic carbonate rocks
  • 作者:李开 ; 谢淑云 ; 雷蕾 ; 鲍征宇 ; 何治亮 ; 沃玉进 ; 张殿伟 ; 张海
  • 英文作者:LI Kai;XIE Shuyun;LEI Lei;BAO Zhengyu;HE Zhiliang;WO Yujin;ZHANG Dianwei;ZHANG Hai;Guangdong Nuclear Power Engineering Exploration Institute;
  • 关键词:鲕粒碳酸盐岩 ; 选择性溶蚀 ; 微观形貌 ; 储集空间 ; 实验
  • 英文关键词:oolitic carbonate;;selective dissolution;;microphotography;;effective pore system;;experiment
  • 中文刊名:HXYQ
  • 英文刊名:Marine Origin Petroleum Geology
  • 机构:中国地质大学地球科学学院;广东省核力工程勘察院;中国石油化工股份有限公司石油勘探开发研究院;贵州省地矿局113地质大队;
  • 出版日期:2018-10-25
  • 出版单位:海相油气地质
  • 年:2018
  • 期:v.23
  • 基金:国家重大专项“大型油气田及煤层气开发”(编号:2008ZX05005);; 国家“973计划”项目“中国早古生代海相碳酸盐岩层系大型油气田形成机理与分布规律”(编号:2012CB214802);; 中国石油化工股份有限公司项目“塔里木盆地深层优质碳酸盐岩储层成因与分布”(编号:P14038)联合资助
  • 语种:中文;
  • 页:HXYQ201804007
  • 页数:10
  • CN:04
  • ISSN:33-1328/P
  • 分类号:63-72
摘要
以鲕粒碳酸盐岩薄片样品为研究对象,通过光学显微镜、扫描电镜(SEM)观察样品在稀硫酸溶液作用下溶蚀前后的微观形貌,并总结溶蚀规律,结合能谱仪(EDS)进行成分分析,在此基础上探讨了碳酸盐岩的溶蚀机理。结果显示,鲕粒碳酸盐岩存在对结构和成分的多重选择性溶蚀。从微观形貌来看,相对于鲕粒灰岩,鲕粒白云岩更易产生连通性较好的溶蚀孔洞,形成有效的储集空间;从反应后(12 h)的溶蚀量来看,鲕粒白云岩的失重百分比为1.04%,亦大于鲕粒灰岩的0.70%。能谱分析发现,成分不均一性亦是控制溶蚀反应进程的关键因素,元素含量差异较大的部位更易发生溶蚀作用。鲕粒白云岩溶蚀区域的Mg/Ca值为0.6~0.8,远远小于未溶蚀区域,表明Mg元素含量高的区域更易溶蚀,进而导致Mg/Ca值降低;鲕粒灰岩Si和Al含量高的区域,不易发生溶蚀,这说明石英和长石等难溶矿物的存在会阻碍溶蚀作用的进行,也阻碍了孔隙空间的形成。根据实验结果推测,鲕粒白云岩在含稀硫酸或H2S地层水中更易发生溶蚀作用,形成有效的孔缝洞,从而有利于油气的运移和储集。
        As one of the most important reservoirs of oil and gas resources, the formation and evolution of pore-hole-fracture in oolitic carbonate reservoirs had attracted extensive attention. Based on oolitic carbonate slice, we observe the microstructure and chemical characteristics of the samples before and after the dissolution experiments in dilute sulfuric acid,through the microscope, scanning electron microscope(SEM) and energy spectrum(EDS). The results show that the dissolution of carbonates varied according to the structure and compositions of the samples. On microstructure observation, oolitic dolomites can produce much more dissolution pore to form effective reservoir than the oolitic limestones. The weight losing percentage of oolitic dolomite(1.04%) caused by dissolution in 12 hour is more than that of the oolitic limestone(0.70%).Through the EDS, we find that the variance of compositions is the key factor of dissolution. The sites with various element contents are easier to dissolute. It is shown that in oolitic dolomites there is lower Mg/Ca value(0.6 ~ 0.8) at the dissolution part than at the other parts. The higher degree of dissolution depends on the higher content of Mg element, resulting in the decreasing of Mg/Ca. We also find that there is weak dissolution at the site with high contents of Si and Al in oolitic limestone. This shows that the quartz and feldspar might prevent sample from dissoluting. It is concluded that oolitic dolomite could form a large number of interconnected pore-hole-fracture in formation water enriching dilute sulfuric acid or H2 S, which is conducive to the migration and reservoir formation of oil and gas.
引文
[1]谭聪,于炳松,阮壮,等.利用流体包裹体评价碳酸盐岩储层埋藏孔洞充填强度的新方法:以塔里木盆地为例[J].地学前缘,2016,23(1):253-263.
    [2]何治亮,钱一雄,胡文瑄.中国海相碳酸盐岩储层类型与成因[M].北京:科学出版社,2015:420.
    [3]张德民,鲍志东,郝雁,等.塔里木盆地牙哈—英买力寒武系潜山区优质储层形成模式[J].天然气地球科学,2016,27(10):1797-1807.
    [4]钱一雄,CONXITA T,邹森林,等.碳酸盐岩表生岩溶与埋藏溶蚀比较:以塔北和塔中地区为例[J].海相油气地质,2007,12(2):1-7.
    [5]王炜.四川盆地和塔里木盆地典型碳酸盐岩储层的溶解动力学实验与储层评价研究[D].武汉:中国地质大学(武汉),2011.
    [6]金之钧,蔡立国.中国海相油气勘探前景、主要问题与对策[J].石油与天然气地质,2006,27(6):722-730.
    [7]雷川,陈红汉,苏奥,等.碳酸盐岩埋藏溶蚀研究进展[J].断块油气田,2014,21(2):165-170.
    [8] POKROVSKY O S, GOLUBEV S V, SCHOTT J. Dissolution kinetics of calcite, dolomite and magnesite at 25℃and 0 to50 atm pCO2[J]. Chemical geology, 2005, 217(3/4):239-255.
    [9] GAUTELIER M, SCHOTT J, OELKERS E H. An experimental study of dolomite dissolution rates at 80℃as a function of chemical affinity and solution composition[J]. Chemical geology,2007, 242(3/4):509-517.
    [10]范明,何治亮,李志明,等.碳酸盐岩溶蚀窗的形成及地质意义[J].石油与天然气地质,2011,32(4):499-505.
    [11]范明,胡凯,蒋小琼,等.酸性流体对碳酸盐岩储层的改造作用[J].地球化学,2009,38(1):20-26.
    [12]崔振昂,鲍征宇,张天付,等.埋藏条件下碳酸盐岩溶解动力学实验研究[J].石油天然气学报,2007,29(3):230-233.
    [13] BERNINGER U N, SALDI G D, JORDAN G, et al. Assessing dolomite surface reactivity at temperatures from 40 to 120℃by hydrothermal atomic force microscopy[J]. Geochimica et cosmochimica acta, 2017, 199:130-142.
    [14]朱文慧,曲希玉,邱隆伟,等.盐酸及乙酸介质中的碳酸盐岩溶蚀表面特征及机理:以南堡凹陷为例[J].矿物岩石地球化学通报,2015,34(3):619-625.
    [15] PIMENTEL C, PINA C M, GNECCO E. Epitaxial growth of calcite crystals on dolomite and kutnahorite(104)Surfaces[J]. Crystal growth and design, 2013, 13(6):2557-2563.
    [16]吴聪孟,王小强,赵康,等.原子力显微镜法研究方解石(104)面的生长及溶解[J].化学进展,2011,23(1):107-124.
    [17] KLASA J, RUIZ-AGUDO E, WANG L J, et al. An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions[J]. Geochimica et cosmochimica acta, 2013, 117:115-128.
    [18] NOIRIEL C, GOUZE P, MAD魪B. 3D analysis of geometry and flow changes in a limestone fracture during dissolution[J]. Journal of hydrology, 2013, 486(8):211-223.
    [19]佘敏,寿建峰,贺训云,等.碳酸盐岩溶蚀机制的实验探讨:表面溶蚀与内部溶蚀对比[J].海相油气地质,2013,18(3):55-61.
    [20]张天付,鲍征宇,马明,等.鲕粒灰岩的溶解动力学特征和微观形貌的发育演化[J].沉积学报,2009,27(6):1033-1042.
    [21]黄康俊,王炜,鲍征宇,等.埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用:溶解动力学实验研究[J].地球化学,2011,40(3):289-300.
    [22]杨云坤,刘波,秦善,等.基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J].北京大学学报(自然科学版),2014,50(2):316-322.
    [23]张单明,秦善,刘波,等.碳酸盐岩-H2S平衡体系原位溶蚀模拟实验及其地质意义[J].北京大学学报(自然科学版),2015,51(4):745-754.
    [24]方旸,谢淑云,何治亮,等.基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀[J].地球科学(中国地质大学学报),2016,41(5):779-791.
    [25] QAJAR J, ARNS C H. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysispart 1:assessment of pore-scale mineral dissolution and deposition[J]. Journal of contaminant hydrology, 2016, 192:60-86.
    [26]佘敏,寿建峰,沈安江,等.从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J].地球化学,2014,43(3):276-286.
    [27] KROUSE H R,肖轶.深部碳酸盐储层中轻烃气体对硫酸盐进行热化学还原(TSR)的化学和同位素证据[J].地质地球化学,1990(6):39-43.
    [28]朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J].岩石学报,2006,22(8):2182-2194.
    [29]刘琦,卢耀如,张凤娥,等.温度与动水压力作用下灰岩微观溶蚀的定性分析[J].岩土力学,2010,31(增刊2):149-154.
    [30] BRANTLEY S L, KUBICKI J D, WHITE A F. Kinetics of water-rock interaction[M]. New York:Springer, 2008.
    [31] PLUMMER L N, WIGLEY T M L, PARKHURST D L. The kinetics of calcite dissolution in CO2-water systems at 5℃to60℃and 0.0 to 1.0 atm CO2[J]. America journal of science,1978, 278(2):179-216.
    [32] ARAKAKI T, MUCCI A. A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solutions at 25℃and 1 atm total pressure[J]. Aquatic geochemistry, 1999, 5(2):225.
    [33] WHITE A F, PETERSON M L. Role of reactive-surfacearea characterization in geochemical kinetic models[C]. ACS(American Chemical Society)symposium series, 1990, 416:461-475.
    [34] MORSE J W, ARVIDSON R S, ANDREAS L. Calcium carbonate formation and dissolution[J]. Chemical reviews, 2007,107(2):342-381.
    [35]腾格尔,高长林,胡凯,等.上扬子东南缘下组合优质烃源岩发育及生烃潜力[J].石油实验地质,2006,28(4):359-365.
    [36]梅冥相.显生宙罕见的巨鲕及其鲕粒形态多样性的意义:以湖北利川下三叠统大冶组为例[J].现代地质,2008,22(5):683-698.
    [37]苏立萍,罗平,胡社荣,等.川东北罗家寨气田下三叠统飞仙关组鲕粒滩成岩作用[J].古地理学报,2004,6(2):182-190.
    [38]张水昌,朱光有,何坤.硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J].岩石学报,2011,27(3):809-826.
    [39]杨建,康毅力,兰林,等.流体p H值对致密砂岩储层渗透率的影响[J].天然气工业,2005,25(10):33-35.
    [40]刘华强,罗邦林.高含硫气田水平井试井工艺技术[J].天然气工业,2005,25(8):97-99.
    [41]佘敏,朱吟,沈安江,等.塔中北斜坡鹰山组碳酸盐岩溶蚀的模拟实验研究[J].中国岩溶,2012,31(3):234-239.
    [42] BERNER R A. Rate control of mineral dissolution under earth surface conditions[J]. American journal of science, 1978, 278(9):1235-1252.
    [43]张建勇,刘文汇,范明,等. TSR产物对碳酸盐岩储层是否具有改良作用:实验地质学的依据[J].海相油气地质,2008,13(2):57-61.
    [44]范明,蒋小琼,刘伟新,等.不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830.
    [45] POKROVSKY O S, GOLUBEV S V, SCHOTT J, et al. Calcite,dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150℃and 1 to 55 atm pCO2:new constraints on CO2sequestration in sedimentary basins[J]. Chemical geology, 2009, 265(1/2):20-32.
    [46]宋焕荣,黄尚瑜.碳酸盐岩化学溶蚀效应[J].现代地质,1993,7(3):363-371.
    [47]闫志为.硫酸根离子对方解石和白云石溶解度的影响[J].中国岩溶,2008,27(1):24-31.
    [48]张学丰,刘波,蔡忠贤,等.白云岩化作用与碳酸盐岩储层物性[J].地质科技情报,2010,29(3):79-85.
    [49] DAVIS K J, NEALSON K H, L譈TTGE A. Calcite and dolomite dissolution rates in the context of microbe-mineral surface interactions[J]. Geobiology, 2010, 5(2):191-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700