用户名: 密码: 验证码:
微量元素添加对Ti1100合金的高温抗氧化及耐蚀性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Minor Additions of Elements into Ti1100 on Elevated Temperature Oxidation-and Corrosion-Resistance
  • 作者:车晋达 ; 姜贝贝 ; 王清 ; 董闯 ; 陈国清 ; 张瑞谦 ; 唐睿 ; 徐芬 ; 孙立贤
  • 英文作者:Che Jinda;Jiang Beibei;Wang Qing;Dong Chuang;Chen Guoqing;Zhang Ruiqian;Tang Rui;Xu Fen;Sun Lixian;Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),Dalian University of Technology;Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China;Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology;
  • 关键词:近α-Ti合金 ; 合金设计 ; 微量元素 ; 高温氧化
  • 英文关键词:near-α Ti alloys;;composition design;;minor-addition of elements;;high-temperature oxidation
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:大连理工大学三束材料改性教育部重点实验室;中国核动力研究设计院反应堆燃料及材料重点实验室;桂林电子科技大学广西信息材料重点实验室;
  • 出版日期:2018-05-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.382
  • 基金:国家自然科学基金资助(51171035,51131002);; 辽宁省自然科学基金(2015020202);; 国家国际科技合作专项(2015DFR60370);; 广西信息材料重点实验室基金(161002-K)
  • 语种:中文;
  • 页:COSE201805022
  • 页数:7
  • CN:05
  • ISSN:61-1154/TG
  • 分类号:151-157
摘要
利用固溶体合金中的"团簇加连接原子"模型解析了典型高温近α-Ti合金Ti1100的成分,其团簇成分式为[Al-(Ti_(13.7)Zr_(0.3)](Al_(0.69)Sn_(0.18)Mo_(0.03)Si_(0.12)。在此基础上,采用相似元素替代原则设计了微量元素Hf、Ta和Nb添加的系列合金成分,即[Al-(Ti_(13.7)Zr_(0.15)Hf_(0.15))](Al_(0.69)Sn_(0.18)Si_(0.1)(Mo/Ta/Nb)_(0.03))。对该系列合金进行950℃,1h固溶+560℃,6h时效处理,然后进行组织结构、硬度、抗高温氧化及电化学腐蚀性能测试。结果表明Zr_(0.15)Hf_(0.15),合金与参比合金具有相同片层β转变组织,而在此基础上Ta和Nb的添加会使合金中产生大量等轴α组织;但组织的改变对系列合金的显微硬度影响不大,介于3300~3700MPa。650℃氧化100 h后系列合金均具有较强的抗氧化能力,氧化增重小于1.0mg/cm~2,而在800℃氧化100h后,添加Hf、Ta、Nb元素的合金氧化增重明显低于Ti1100合金,氧化层厚度为23~27μm,且氧化层致密,其中[Al-(Ti_(13.7)Zr_(0.15)Hf_(0.15))](Al_(0.69)Sn_(0.18)Si_(0.1)Ta_(0.015)Nb_(0.015))合金具有最优的抗高温氧化性能,800℃,100h后的氧化增重仅为2.6mg/cm~2。此外,该系列合金在在3.5%NaCl溶液中也具有较好的耐蚀性。
        The composition rule of near-αTi alloy Ti1100 was investigated using a cluster-plus-glue-atom model for solid-solution alloys,and its cluster formula could be expressed as [Al-(Ti_(13.7)Zr_(0.3)](Al_(0.69)Sn_(0.18)Mo_(0.03)Si_(0.12) A new series of alloys by adding minor Hf,Ta and Nb with similar elements substitution in equimolar ratio were then designed,being [Al-(Ti_(13.7)Zr_(0.15)Hf_(0.15))](Al_(0.69)Sn_(0.18)Si_(0.1)(Mo/Ta/Nb)_(0.03)) These alloys were solid-solution-treated at 950℃ for 1h followed by water-quenching,and then aged at 560℃ for 6h.Subsequently,the microstructures,microhardness,elevated temperature oxidation-and corrosion-resistance of the alloys were measured.The results show that the alloy with Hf_(0.15) substitution for Zr_(0.15) in Ti1100 still exhibits aβ-transformed lamellar microstructure,while the further combinations of Ta and Nb induce a large amount of equiaxedαgrains to form a duplex microstructure.The change of microstructure hardly affects the microhardness of the alloys,with in a range of 3300~3700 MPa.All the designed alloys,as well as the reference Ti1100,possess excellent oxidation-resistance at 650℃,and all the oxidation mass gains are less than 1.0 But the results are obviously different in comparison with that of Ti1100 at 800℃.The oxidation mass gains of the designed alloys with Hf,Ta and Nb co-alloying after 100h are significantly fewer,and the widths of the dense oxidation layers are among 23~27μm.The [Al-(Ti_(13.7)Zr_(0.15)Hf_(0.15))](Al_(0.69)Sn_(0.18)Si_(0.1)Ta_(0.015)Nb_(0.015)) alloy has the best oxidation resistance with the fewest oxidation mass gain of 2.6In addition,this series of alloys also have good corrosion resistance in 3.5%NaCl.
引文
[1]Hicks M A,Thomas M C.Proceedings of 6th International Charles Parsons Turbine Conference[C].Ireland:Trinity College Dublin,2003:43
    [2]Leyens C,Kocian F,Hausmann J et al.Aerosp Sci Technol[J],2003,7:201
    [3]Xin Shewei(辛社伟),Hong Quan(洪权),Lu Yafeng(卢亚锋)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(11):1918
    [4]Jin Hexi(金和喜),Wei Kexiang(魏克湘),Li Jianming(李建明)et al.The Chinese Journal of Nonferrous Metal(中国有色金属学报)[J],2015,25(2):280
    [5]Cai Jianming(蔡建明),Li Zhenxi(李臻熙),Ma Jimin(马济民)et al.Materials Review(材料导报)[J],2005,19(1):50
    [6]Weiss I,Semiatin S L.Mat Sci Eng A[J],1999,263(2):243
    [7]Brewer W D,Bird R K,Wallace T A.Mat Sci Eng A[J],1998,243(1):299
    [8]Ghonem H.Int J Fatigue[J],2010,32(9):1448
    [9]Boyer R R.Mat Sci Eng A[J],1996,213(1):103
    [10]Zhang Jishan(张济山),Cui Hua(崔华),Hu Zhuanglin(胡壮麒).Journal of Materials Science and Engineering(材料科学与工程)[J],1993,11(3):1
    [11]Li Dong(李东),Wan Xiaojing(万晓景).Acta Metallurgica Sinica(金属学报)[J],1984,20(6):391
    [12]Sun Yu(孙宇),Zeng Weidong(曾卫东),Zhao Yongqing(赵永庆)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(2):220
    [13]Hao Chuanpu(郝传璞),Wang Qing(王清),Ma Rentao(马仁涛)et al.Acta Physica Sinica(物理学报)[J],2011,11:484
    [14]Pang C,Jiang B,Shi Y et al.J Alloy Compd[J],2015,652:63
    [15]Wang Q,Ji C,Wang Y et al.Metall Mater Trans A[J],2013,44(4):1872
    [16]Chandravanshi V,Sarkar R,Kamat S V et al.Metall Mater Trans A[J],2013,44(1):201
    [17]Santodonato L J,Zhang Y,Feygenson M et al.Nat Commun[J],2015,6:5964
    [18]Otto F,Yang Y,Bei H et al.Acta Mater[J],2013,61(7):2628
    [19]Li Qun(李群),Wang Qing(王清),Li Xiaona(李晓娜)et al.Acta Metallurgica Sinica(金属学报)[J],2013,49(8):1143
    [20]Li C,Chen J,Li W et al.J Alloy Compd[J],2015,627:222
    [21]Zhao Z L,Li H,Fu M W et al.J Alloy Compd[J],2014,617:525
    [22]Moseke C,Lehmann C,Schmitz T et al.Curr Nanosci[J],2013,9(1):132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700