用户名: 密码: 验证码:
山西五台山东腰庄金矿绿泥石成因矿物学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic Mineralogy of Chlorite from the Dongyaozhuang Gold Deposit, Wutai Mountain, Shanxi Province, China
  • 作者:刘燚平 ; 陈静 ; 张华锋 ; 王春亮
  • 英文作者:LIU Yi-ping;CHEN Jing;ZHANG Hua-feng;WANG Chun-liang;School of Earth Sciences and Resources, China University of Geosciences;The Sixth Geological Team of the Tibet Autonomous Region Geological and Mineral Exploration and Development Bureau;The third geology project reconnaissance courtyard of Shanxi Province;
  • 关键词:成因矿物学 ; 绿泥石 ; 矿物化学 ; 金矿 ; 东腰庄 ; 五台山
  • 英文关键词:genetic mineralogy;;chlorite;;mineral chemistry;;gold deposit;;the Dongyaozhuang;;Wutai Mountain
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:中国地质大学(北京)地球科学与资源学院;西藏自治区地质矿产勘查开发局第六地质大队;山西省第三地质勘察院;
  • 出版日期:2018-06-25 14:20
  • 出版单位:矿物学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划(编号:2016YFC0600106)
  • 语种:中文;
  • 页:KWXB201805006
  • 页数:16
  • CN:05
  • ISSN:52-1045/P
  • 分类号:50-65
摘要
绿泥石作为常见的变质和热液蚀变矿物,其成分特征能够反映流体的物理化学条件,为其成因和有关的成矿条件提供重要信息。山西五台山东腰庄金矿位于新太古代五台山绿岩带,具有不同成因的多期绿泥石化现象,分别有前寒武纪区域变质作用有关的绿泥石(简称C1)、变质作用晚期热液矿化蚀变的绿泥石(变形的硫化物-(电气石)石英脉中;C2)和主成矿(矿体热液脉中;C3)等3期绿泥石。对不同期次绿泥石的成因矿物学研究显示,C1为镁质绿泥石,C2和C3为铁质绿泥石。相对C2而言,C3的Al含量相对升高。从早到晚,绿泥石形成温度分别为348~464℃(平均398℃),288~490℃(平均380℃)和145~259℃(平均215℃)。C2和C3的lgf(O_2)分别为-32.28~-24.76(平均-28.91),-50.37~-35.71(平均-42.07),对应的lgf(S_2)为-10.24~-6.28(平均-8.49)和-19.26~-11.98(平均-15.23)。总体而言,东腰庄金矿围岩中的变质成因绿泥石(C1)相对富镁,而与早期矿化有关的热液绿泥石(C2)则相对富铁,形成于中温、高氧逸度(HM-NNO之间)的较氧化环境之中,而晚期与主成矿有关的热液绿泥石(C3)虽然也属于铁质绿泥石,但是其形成的温度和氧逸度(NNO-FMQ之间)等均有降低趋势。绿泥石的成分及物理化学性质在空间上表现出明显的差异性,其Fe/(Fe+Mg)从围岩至矿体呈升高趋势,而f(O_2)及f(S_2)值则呈现降低趋势,可以很好地指示成矿流体演化趋势和找矿。
        Chlorite is a common mineral of metamorphism and hydrothermal alteration. Its compositional characteristics can reflect the physicochemical conditions of the fluid and provide insightful clues to the mineral genesis and related metallogenic conditions. The Dongyaozhuang gold deposit occurs in the Neoarchean Wutai greenstone belt, with various genetic multi-stage chloritization. In the deposit, at least three stages of chlorite have been identified. They include the chlorite formed in the Precambrian regional metamorphism(C1), the chlorite, occurred in the deformed sulfide-(tourmaline)-quartz veins, formed by the hydrothermal alteration in the late stage of metamorphism(C2), and the chlorite, occurred in hydrothermal veins of orebodies, formed in the main stage of gold mineralization(C3), respectively. The genetic mineralogy of various stages of chlorite indicates that the C1 belongs to magnesian chlorite, while the C2 and C3 belong to iron chlorite. Comparing to the C2, the C3 is relatively rich in Al. From early to late stages, the C1, C2 and C3 have calculated formation temperatures varying from 348 to 464 ℃(average of 398 ℃), from 288 to 490 ℃(average of 380 ℃), and from 145 to 259 ℃(average of 215 ℃), respectively. Especially, the calculated lgf(O_2)values vary from-32.28 to-24.76(average of-28.91) for the C2, and from-50.37 to-35.71(average of-42.07) for the C3), and the lgf(S_2) values vary from-10.24 to-6.28(average of-8.49) for the C2 and from-19.26 to-11.98(average of-15.23) for the C3. Generally, the metamorphic chlorite(C1) in the Dongyaozhuang gold deposit was relatively rich in MgO. The C2 which is a hydrothermal chlorite in association with the early gold mineralization is relatively rich in FeO, with the formation conditions of intermediate temperature and relatively high oxidized environment with oxygen fugacity in the HM-NNO buffer zone. The C3 which is a late hydrothermal chlorite in association with the main gold mineralization also belongs to the iron chlorite, but it was formed at relatively low temperature and in a relatively low oxidized environment with oxygen fugacity in the NNO-FMQ buffer zone. The significant spatial differences in chemical compositions and physicochemical properties of various stages of chlorites, such as the Fe/(Fe+Mg) ratios are gradually increased but the oxygen and sulfur fugacity values are decreased, for chlorites from the country rock to gold orebody, can be taken as indicators for tracking the evolution and flowing path of ore-forming fluids and for prospecting gold mineralization.
引文
[1]Hillier S, Velde B. Octahedral occupancy and the chemical composition of diagenetic (low - temperature) chlorites[J]. Clay Minerals, 1991, 26(2):149-168.
    [2]De Caritat P. Chlorite Geothermometry: A Review[J]. Clays & Clay Minerals, 1993, 41 (2):219-239.
    [3]McDowell S D, Elders W A. Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA[J]. Contributions to Mineralogy and Petrology, 1980, 74(3): 293-310.
    [4]Jahren J S, Aagaard P. Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry[J]. Clay Minerals, 1989, 24(2): 157-170.
    [5]Cathelineau M, Nieva D. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system[J]. Contributions to Mineralogy and Petrology, 1985, 91(3): 235-244.
    [6]Walshe J L. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems[J]. Economic Geology, 1986, 81(3): 681-703.
    [7]Kranidiotis P, Maclean W H, Kranidiotis P, et al. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 1987, 82(7):1898-1911.
    [8]Cathelineau M. Cation Site Occupancy in Chlorites and Illites as a Function of Temperature[J]. Clay Minerals, 1988, 23(4):471-485.
    [9]Jowett E C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer: GAC/MAC/SEG Joint Annual Meeting. Toronto, 1991, May 27-29, Program with Abstracts 16, A62.
    [10]Vidal O, Parra T, Trotet F. A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 C, 1 to 25 kb range[J]. American Journal of Science, 2001, 301(6): 557-592.
    [11]Vidal O, Parra T, Vieillard P. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation[J]. American Mineralogist, 2005, 90(2-3): 347-358.
    [12]Vidal O, De Andrade V, Lewin E, et al. P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan)[J]. Journal of Metamorphic Geology, 2006, 24(7): 669-683.
    [13]Inoue A, Meunier A, Patrier-Mas P, et al. Application of Chemical Geothermometry to Low - Temperature Trioctahedral Chlorites[J]. Clays & Clay Minerals, 2009, 57(3):371-382.
    [14]Bourdelle F, Parra T, Chopin C, et al. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions[J]. Contributions to Mineralogy and Petrology, 2013, 165 (4): 723-735.
    [15]Lanari P, Wagner T, Vidal O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2- H2O applications to P-T sections and geothermometry[J]. Contributions to Mineralogy and Petrology, 2014, 167(2): 1-19.
    [16]Pirajno F. Hydrothermal Alteration[M]// Hydrothermal Mineral Deposits. Springer Berlin Heidelberg, 1992, 101-155.
    [17]Rose A W, Burt D M. Hydrothermal alteration [A]. Barnes H L. Geochemistry of Hydrothermal Ore Deposits[M]. 2nd ed. New York: John Wiley & Sons, 1979: 798.
    [18]Wilkinson J J, Chang Z, Cooke D R, et al. The chlorite proximitor: A new tool for detecting porphyry ore deposits[J]. Journal of Geochemical Exploration, 2015, 152:10-26.
    [19]Large R R. Zonation of hydrothermal minerals at the Juno mine, Tennant Creek goldfield, central Australia[J]. Economic Geology, 1975, 70(8): 1387-1413.
    [20]Nesbitt B E, Nesbitt B E. Metamorphic sulfide-silicate equilibria in the massive sulfide deposits at Ducktown, Tennessee[J]. Economic Geology, 1982, 77(2):364-378.
    [21]Costa U R, Barnett R L, Kerrich R. The Mattagami Lake mine Archean Zu-Cu sulphide deposit, Quebec: hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool-evidence from geochemistry, 180/160, and mineral chemistry. Economic geology, 1983, 78:1144-1203.
    [22]Zang W and Fyfe W S. Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposite, Carajas, Brazil[J ]. Mineralium Deposita, 1995, 30:30-38.
    [23]Dora M L, Randive K R. Chloritisation along the Thanewasna shear zone, Western Bastar Craton, Central India: Its genetic linkage to Cu-Au mineralisation[J]. Ore Geology Reviews, 2015, 70: 151-172.
    [24]田永清, 王安建, 余克忍,等. 山西省五台山-恒山地区脉状金矿成矿的地球动力学[J]. 华北地质矿产杂志, 1998, 13(4): 342-343.
    [25]田永清,苗培森,余克忍. 紧闭褶皱翼部的剪切变形作用五台山绿岩带金矿化的一种构造控矿机制[J].前寒武纪研究进展, 1999, 22(4):18-29.
    [26]田永清,余克忍,苗培森. 五台山绿岩带东腰庄金矿成矿地质特征及控矿因素浅析[J]. 前寒武纪研究进展, 2000, 23(2): 88-97.
    [27]姜峰贤. 山西五台县东腰庄金矿成矿地质特征及矿床成因[J]. 地质与勘探, 2006, 42(3):24-29.
    [28]李建业. 山西省五台县东腰庄金矿成矿地质特征[J]. 华北国土资源, 2006, (4): 8-10.
    [29]董培培, 刘德武, 刘玉翠,等. 山西东腰庄绿岩带型金矿床地质特征及找矿标志[J]. 黄金科学技术, 2011, 19(4): 42-44.[30] 黄志新, 袁万明. 五台山东腰庄金矿地质特征及控矿因素[J]. 金属矿山, 2012,3: 90-93.
    [30]卢静. 山西省五台县东腰庄金矿岩石地球化学特征与矿物学填图[D]. 北京:中国地质大学, 2009:32-38.
    [31]田永清. 五台山-恒山绿岩带地质及金的成矿作用[J]. 太原: 山西省科学技术出版社, 1991,14-215.
    [32]陈平, 苗培森, 李德胜,等. 山西五台山太古宙绿岩带金矿成矿系统初论[J]. 前寒武纪研究进展, 1999, 22(3):14-21.
    [33]Du L L, Yang C H, Wang W, et al. The re-examination of the age and stratigraphic subdivision of the Hutuo Group in theWutai Mountains area, North China Craton: evidence from geology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2011, 27:1037-1055.
    [34]Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136:177- 202.
    [35]Wang Z H. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen[J]. Precambrian Research, 2009, 170(1): 73-87.
    [36]Wang Z H, Wilde S, Wan J L. Tectonic setting and significance of 2.3-2.1 Ga magmatic events in the Trans-North China Orogen: new constraints from the Yanmenguan maficeultramafic intrusion in the Hengshane-Wutai-Fuping area[J]. Precambrian Research, 2010, 178, 27-42.
    [37]Liu S W, Shu G M, Pan Y M, et al. Electron microprobe dating and metamorphic age of Wutai Group, Wutai Mountains[J]. Geological Journal of China Universities, 2004, 10:356-363.
    [38]Liu S W, Zhao G, Wilde S A, et al. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2006, 148(3): 205-224.
    [39]Wei C, Qian J, Zhou X. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton[J]. Geoscience Frontiers, 2014, 5(4): 485-497.
    [40]白瑾,王汝铮,郭进京. 五台山早前寒武纪重大地质事件及其年代[M]. 北京:地质出版杜, 1992.
    [41]Peng P, Zhai M G, Guo J H, et al. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton[J]. Gondwana Research, 2007, 12(1): 29-46.
    [42]Wang K Y, Hao J, Wilde S, et al. Reconsideration of some key geological problems of late Archean-early Proterozoic in the Wutaishan-Hengshan area: constraints from SHRIMP U-Pb zircon data[J]. Scientia Geologica Sinica, 2000, 35: 175-184.
    [43]Guan H, Sun M, Wilde S A, et al. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton[J]. Precambrian Research, 2002, 113(1): 1-18.
    [44]Zhao G C, Wilde S A, Cawood P A, et al. SHRIMP U-Pb zircon ages of the Fuping complex: implications for accretion and assembly of the North China Craton[J]. American Journal of Science, 2002, 302, 191-226.
    [45]Wilde S A, Zhao G C. Wang K Y, et al. First precise SHRIMP zircon U-Pb ages for the Hutuo Group in Wutaishan: further evidence for amalgamation of North China Craton[J]. Chinese Science Bulletin, 2004, 49: 83-90.
    [46]Krner A, Wilde S A, Li J H, et al. Age and evolution of a late Archean to early Paleoproterozoic upper to lower crustal section in the Wutaishan/ Hengshan/ Fuping terrain of northern China[J]. Journal of Asian Earth Science, 2005, 24: 577-595.
    [47]Krner A, Wilde S A, Zhao G C, et al., Zircon geochronology and Metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: evidence for late Paleoproterozoic extension and subsequent highpressure metamorphism in the North China Craton[J]. Precambrian Research, 2006, 146:45-67.
    [48]Pang E C, Xu Y J, Shi G H, et al. Geochemistry and chronology of Hong Tang ore-bearing rocks in the Daixian rutile deposit, Shanxi Province[J]. Acta Petrological Et Mineralogica, 2010, 29: 497-506.
    [49]Qian J H, Wei C J, Zhou X W, et al. Metamorphic P-T paths and New Zircon U-Pb age data for garnetemica schist from the Wutai Group, North China Craton[J]. Precambrian Research, 2013, 233: 282-296.
    [50]Zhang Y H, Wei C J, Tian W, et al. Reinterpretation of metamorphic age of the Hengshan Complex, North China Craton[J]. Chinese Science Bulletin, 2013, 58 (34): 4300-4307.
    [51]Zhang J, Zhao G, Li S, et al. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen[J]. Journal of Structural Geology, 2007, 29(6): 933-949.
    [52]Trap P, Faure M, Lin W, et al. The Lüliang Massif: a key area for the understanding of the Palaeoproterozoic Trans-North China Belt, North China Craton[J]. Geological Society, London, Special Publications, 2009, 323(1): 99-125.
    [53]Li S, Zhao G, Wilde S A, et al. Deformation history of the Hengshan- Wutai-Fuping Complexes: implications for the evolution of the Trans-North China Orogen[J]. Gondwana Research, 2010, 18(4): 611-631.
    [54]Peng P, Zhai M G, Zhang H F, et al. Geochemistry and geological significance of the 1.8 Ga mafic dyke swarms in the North China Craton: an example from the juncture of Shanxi, Hebei and Inner Mongolia[J]. Acta Petrologica Sinica, 2004, 20(3): 439-456.
    [55]Peng P, Zhai M G, Zhang H F, et al. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes[J]. International Geology Review, 2005, 47 (5):492-508.
    [56]Peng P, Zhai M G, Guo J H. 1.80-1.75 Ga mafic dyke swarms in the central North China craton: implications for a plume-related break-up event[A]. Dyke Swarms-Time Markers of Crustal Evolution [M. ]London:. Taylor & Francis, 2006, 99-112.
    [57]刘志宏, 王安建, 许虹. 五台山地区韧性剪切带型金矿成因[J]. 矿床地质, 1997, (4). 351-364.
    [58]Zhang J Q, Li S R, Santosh M, et al. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton[J]. Geoscience Frontiers, 2017, 1-18.
    [59]Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1):185-187.
    [60]Foster M D. Iterpretation of the composition and a Classification of the chlorites[J].US Geology Survey Prof, 1962, 414A, 33.
    [61]Zane, A, Weiss, Z. A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data[J]. RendicontiLincei, 1998, 9, 51-56.
    [62]Xie X, Byerly G R, Ferrell Jr R E. Ⅱb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry [J]. Contributions to Mineralogy and Petrology, 1997, 126(3): 275-291.
    [63]Hutcheon I. Clay-carbonate reactions in the Venture area, Scotian shelf, Nova Scotia, Canada[J]. The Geochemical society, Special Publication, 1990, 2: 199-212.
    [64]J]. Докл. АН СССР, 1975, Т.No3:222-227.
    [65]Stefano. Applying X-Ray Geothermometer Diffraction to a Chlorite[J]. Clays & Clay Minerals, 1999, 47(1):54-63.
    [66]Rausell-Colom J A, Wiewiora A, Matesanz E. Relation between composition and d001 for chlorite [J]. Am. Mineral, 1991, 76:1373-1379.
    [67]Nieto F. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach[J]. European Journal of Mineralogy, 1997, 9(4): 829-842.
    [68]刘燚平,张少颖,张华锋. 绿泥石的成因矿物学研究综述[J].地球科学前沿,2016,6(3):264-282.
    [69]Buchholz P, Oberthür T, Lüders V, et al. Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: A combined geochemical, mineralogical, stable isotope, and fluid inclusion study[J]. Economic Geology, 2007, 102(3): 347-378.
    [70]Bourdelle F, Cathelineau M. Low-temperature chlorite geothermometry: a graphical representation based on a T-R2+-Si diagram[J]. European Journal of Mineralogy, 2015, 27(5):617-626.
    [71]Bryndzia L T, Scott S D. The composition of chlorite as a function of sulfur and oxygen fugacity; an experimental study[J]. American Journal of science, 1987, 287(1): 50-76.
    [72]Massonne H J. The upper thermal stability of chlorite + quartz: an experimental study in the system MgO-Al2O3-SiO2-H2O[J]. Journal of Metamorphic Geology, 2010, 7(6):567-581.
    [73]James R S, Turnock A C, Fawcett J J. The stability and phase relations of iron chlorite below 8.5 kb [J]. Contributions to Mineralogy & Petrology, 1976, 56(1):1-25.
    [74]Parry W T, Downey L M. Geochemistry of hydrothermal chlorite replacing igneous biotite[J]. Clays Clay Miner, 1982, 30(2): 81-90.
    [75]廖震, 刘玉平, 李朝阳,等.都龙锡锌矿床绿泥石特征及其成矿意义[J]. 矿床地质, 2010, 29(1):169-176.
    [76]王小雨, 毛景文, 程彦博, 等.粤东新寮岽铜多金属矿床绿泥石特征及其地质意义[J]. 岩石矿物学杂志, 2014, 33(5): 885-905.
    [77]刘英俊. 元素地球化学导论[M]. 北京:地质出版社, 1987, 124-128.
    [78]Skirrow R G, Walshe J L. Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek Inlier, Australia: An integrated geologic and chemical model[J]. Economic Geology, 2002, 97(6): 1167-1202.
    [79]An F, Zhu Y. Native antimony in the Baogutu gold deposit (west Junggar, NW China): Its occurrence and origin[J]. Ore Geology Reviews, 2010,37(3): 214-223.
    [80]Archibald S M, Migdisov A A, Williams-Jones A E. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimica Acta, 2001, 65(23): 4413-4423.
    [81]毛华海, 张哲儒.热液中金的沉淀机理研究综述[J]. 地质地球化学, 1997, (2):89-92.
    [82]汪东波. 金从热液中沉淀的机制[J]. 有色金属矿产与勘查, 1998, (5):257- 261.
    [83]Helgeson H C, Garrels R M, Helgeson H C, et al. Hydrothermal transport and deposition of gold[J]. Economic Geology, 1968, 63(6):622-635.
    [84]Henley R W. Solubility of gold in hydrothermal chloride solutions[J]. Chemical Geology, 1973, 11(2):73-87.
    [85]Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica Et Cosmochimica Acta, 1973, 37(3):379-399.
    [86]Seward T M. The transport and deposition of gold in hydrothermal systems[A]. Gold[C]. 1984, 82: 165-181.
    [87]Zhu Y, An F, Tan J. Geochemistry of hydrothermal gold deposits: a review[J]. Geoscience Frontiers, 2011, 2(3): 367-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700