用户名: 密码: 验证码:
基于几何特征分解和环状切片的整体叶轮五轴混合加工工艺规划方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Five-Axis Additive-Subtractive Hybrid Machining Process Planning Method for Blisk Based on Geometric Feature Decomposition and Annular Slicing
  • 作者:唐新宇 ; 汪祥 ; 李昊翔 ; 邓晓鹏 ; 赵明宇 ; 刘长青 ; 乔辉
  • 英文作者:TANG Xinyu;WANG Xiang;LI Haoxiang;DENG Xiaopeng;ZHAO Mingyu;LIU Changqing;QIAO Hui;College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics;SIPPR Engineering Group Co., Ltd.;
  • 关键词:整体叶轮 ; 环状切片 ; 增减材混合加工 ; 特征分解 ; 增材制造
  • 英文关键词:Integral impeller;;Annular Slicing;;Additive-subtractive hybrid manufacturing;;Feature decomposition;;Additive manufacturing
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:南京航空航天大学机电学院;机械工业第六设计研究院有限公司;
  • 出版日期:2019-04-15
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:南京航空航天大学教师能力提升研究重点课题(1611JF0502Z)
  • 语种:中文;
  • 页:HKGJ201908022
  • 页数:7
  • CN:08
  • ISSN:11-4387/V
  • 分类号:83-89
摘要
整体叶盘、叶轮等航空发动机零件形状复杂、精度要求高,对传统加工方法提出了很大挑战。混合加工技术结合了增、减制造技术优点,是解决复杂零件加工问题的有效手段。针对以上问题,基于几何特征将叶轮分解为叶片与叶盘两个部分,利用五轴环状切片方法规划了叶轮的增减材混合加工工艺,并在自主搭建的五轴混合加工平台基础上,对叶轮进行了加工试验,验证了该混合加工工艺规划方法的可行性。
        Aero-engine parts such as blisks and impellers have complex shapes and high precision requirements,which pose great challenges to traditional processing methods. Additive-subtractive hybrid machining method can be used to machine before obstacles formed, which is an effective way to solve complex part processing problems. In view of the above problems, the impeller is decomposed into two parts, the blade and the disc based on geometric features. The fiveaxis annular slicing method is used to plan the additive-subtractive hybrid machining process of the impeller. Based on an self-built five-axis hybrid processing platform, an impeller was processed and tested to verify the feasibility of the hybrid processing planning method proposed in this paper.
引文
[1]李仲宇,李迎光,刘长青.基于5+1轴的增减材混合加工验证平台设计与研制[J].航空制造技术,2018, 61(8):97-101.LI Zhongyu, LI Yingguang, LIU Changqing. Design and development of an additive-subtractive-integrated hybrid machining validation platform based on 5+1 axes[J]. Aeronautical Manufacturing Technology, 2018, 61(8):97-101
    [2] CHO M H, KIM D W, LEE C G, et al. CBIMS:Case-based impeller machining strategy support system[J]. Robotics&Computer Integrated Manufacturing, 2009, 25(6):980-988.
    [3]周火金.复杂叶轮零件的熔积一铣削复合制造研究[D].武汉:华中科技大学,2012.ZHOU Huojin. Research on fusion-milling composite manufacturing of complex impeller parts[D]. Wuhan:Huazhong University of Science and Technology, 2012
    [4]张曙.增材制造和切削混合加工机床[J].机械制造与自动化,2015(6):1-7.ZHANG Shu. Additive manufacturing and cutting hybrid machine tools[J]. Machine Building&Automation, 2015(6):1-7
    [5] LAUWERS B,KLOCKE F,KLINK A,et al. Hybrid processes in manufacturing[J]. CIRP Annals-Manufacturing Technology, 2014,63(2):561-583.
    [6] REN L, SPARKS T, RUAN J, et al. Integrated process planning for a multiaxis hybrid manufacturing system[J], Journal of Manufacturing Science&Engineering, 2010, 132(2):237-247.
    [7] NEWMAN S T, ZHU Z, DHOKIA V, et al. Process planning for additive and subtractive manufacturing technologies[J]. CIRP AnnalsManufacturing Technology, 2015, 64(1):467-470.
    [8]袁绍华,张海鸥,王桂兰,等.熔积和铣削复合精密无模快速制造金属零件[J].新技术新工艺,2011(11):74-77.YUAN Shaohua, ZHANG Haiou, WANG Guilan, et al. Fusion and milling compound precision moldless rapid manufacturing of metal parts[J]. New Technology&New Process, 2011(11):74-77.
    [9]徐家文.整体叶轮的特种加工方法[J].航空精密制造技术,1992(4):19-21.XU Jiawen. Special processing method of blisk[J]. Aviation Precision Manufacturing Technology, 1992(4):19-21.
    [10]黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术,2006, 49(4):94-100.HUANG Chunfen. Modern aviation engine blisk and its manufacturing technology[J]. Aeronautical Manufacturing Technology,2006,49(4):94-100.
    [11]汤鑫,曹腊梅,盖其东,等.高温合金双性能整体叶盘铸造技术[J].航空材料学报,2006(3):93-98.TANG Xin, CAO Lamei, GAI Qidong, et al. Superalloy double performance blisk casting technology[J]. Journal of Aeronautical Materials, 2006(3):93-98.
    [12] SHAN D B, XU W C, LU Y. Study on precision forging technology for a complex-shaped light alloy forging[J]. Journal of Materials Processing Technology, 2004(151):289-293
    [13]刘芳,单德彬,吕炎,等.压气机转子的表面造型及等温精密成形工艺[J].推进技术,2003, 24(5):474-477.LIU Fang, SHAN Debin, LU Yan, et al. Surface modeling of compressor rotor and isothermal precision forming process[J]. Journal of Propulsion Technology, 2003, 24(5):474-477.
    [14]刘芳,林忠钦,单德彬,等.2A70铝合金转子等温闭塞式锻造工艺研究[J].机械工程学报,2005, 41(9):161-165.LIU Fang, LIN Zhongqin, SHAN Debin, et al. Study on isothermal blocking forging process of 2A70 aluminum alloy rotor[J]. Journal of Mechanical Engineering, 2005, 41(9):161-165.
    [15] CHO M H, KIM D W, LEE C G, et al. CBIMS:Case-based impeller machining strategy support system[J]. Robotics and ComputerIntegrated Manufacturing, 2009, 25(6):980-988.
    [16] INNOTEC S. High-speed milling of large impellers[J]. World Pumps, 2008, 2008(507):26-27.
    [17] YOUNG H T, CHUANG L C, GERSCHWILER K, et al.A five-axis rough machining approach for a centrifugal impeller[J].International Journal of Advanced Manufacturing Technology, 2004,23(3-4):233-239.
    [18]张海鸥,熊新红,王桂兰,等.等离子熔积成形与铣削光整复合直接制造金属零件技术[J].中国机械工程,2005, 16(20):1863-1866.ZHANG Haiou, XIONG Xinhong, WANG Guilan, et al. Plasma fusion forming and milling finishing technology for direct manufacturing of metal parts[J]. China Mechanical Engineering, 2005, 16(20):1863-1866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700