用户名: 密码: 验证码:
迷迭香主要组分对沙门氏菌的抑制机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Antibacterial Mechanism of Rosemarys' Main Component Against Salmonella
  • 作者:蔡晓军 ; 孙杨赢 ; 潘道东 ; 曹锦轩 ; 曾小群 ; 吴振 ; 杨雪松
  • 英文作者:Cai Xiaojun;Sun Yangying;Pan Daodong;Cao Jinxuan;Zeng Xiaoqun;Wu Zhen;Yang Xuesong;Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University;Food Science&Nutrition Department of Nanjing Normal University;
  • 关键词:迷迭香组分 ; 1 ; 8-桉叶素 ; 沙门氏菌 ; 抑菌机理
  • 英文关键词:rosemary components;;1,8-cineol;;Salmonella;;antibacterial mechanism
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:宁波大学浙江省动物蛋白食品精深加工技术重点实验室;南京师范大学食品科学与营养系;
  • 出版日期:2019-03-31
  • 出版单位:中国食品学报
  • 年:2019
  • 期:v.19
  • 基金:国家水禽产业技术体系(CARS-42-25)
  • 语种:中文;
  • 页:ZGSP201903026
  • 页数:7
  • CN:03
  • ISSN:11-4528/TS
  • 分类号:140-146
摘要
为研究迷迭香成分对沙门氏菌的抑菌机理,采用牛津杯法测定迷迭香6种单体组分的抑菌圈,找出抑菌最强组分。结合最小抑菌浓度(MIC)、细菌生长曲线、碱式磷酸酶(AKP)活力、细胞膜损伤及胞内物质(K~+、核酸、蛋白质)泄漏,研究其对沙门氏菌的抑制机理。结果发现,迷迭香6种组分对沙门氏菌均具有抑菌作用,以1,8-桉叶素最强,MIC为2.5 mg/mL。1,8-桉叶素对沙门氏菌生长的抑制效果显著,它能损伤细菌内、外膜并引起胞内物质(AKP、K~+、核酸、蛋白质)外渗。1,8-桉叶素抑制沙门氏菌的机理是通过损伤细胞壁和细胞膜结构,破坏胞内环境稳定性而起作用。
        Oxford-cup method was used to determine the inhibitory zone diameter of 6 main monomer components of rosemary extracts against Salmonella. Antibacterial mechanism of the monomer component with the best antibacterial activity was researched by determining the minimal inhibitory concentration(MIC), growth curve of bacteria, alkaline phosphatase(AKP) activity, damage of cell membrane, leakage of intracellular materials such as K~+, nucleic acids and proteins. Results showed that six main monomer components had high antibacterial activity against Salmonella, among which 1,8-cineol was the best one. The MIC of 1,8-cineol against Salmonella was 2.5 mg/mL. Moreover,1,8-cineol inhibited the growth of Salmonella clearly, caused the damage of bacteria cell wall and the inner and outer cell membrane and increased the leakage of bacteria AKP, K~+, nucleic acids and proteins. Antibacterial mechanism of 1,8-cineol against Salmonella is conducted by damaging the structure of cell wall and cell membrane, breaking the stability of intracellular environment.
引文
[1]FORSHELL L P, WIERUP M. Salmonella contamination:a significant challenge to the global marketing of animal food products[J]. Rev Sci Tech Off Int Epiz, 2006, 25(2):541-554.
    [2]MCENTIRE J, ACHESON D, SIEMENS A, et al.The public health value of reducing Salmonella lev els in raw meat and poultry[J]. Food Protection Trends,2014, 34(6):386-392.
    [3]NAGEL G M, BAUERMEISTER L J, BRATCHER C L, et al. Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank[J]. International Journal of Food Microbiology, 2013, 165(3):281-286.
    [4]姜明,王立凤,律凤霞.生物抑菌物质研究进展[J].农学学报, 2013, 3(9):53-55.
    [5]WINDISCH W,李蒙蒙,张桂国,等.植物源性饲料添加剂在猪和家禽上的应用研究进展[C]//山东畜牧兽医学会禽病学专业委员会(SPDC)第二届禽病学术研讨会论文集.潍坊:山东畜牧兽医学会, 2011:18-23.
    [6]RIBEIRO-SANTOS R, CARVALHO-COSTA D,CAVALEIRO C, et al. A novel insight on an ancient aromatic plant:The rosemary(Rosmarinus officinalis L.)[J]. Trends in Food Science&Technology, 2015, 45(2):355-368.
    [7]BEGUM A, SANDHYA S, SYED SHAFFATH A,et al. An in-depth review on the medicinal flora Rosmarinus officinalis(Lamiaceae)[J]. Acta Sci Pol Technol Aliment, 2013, 12(1):61-73.
    [8]TEIXEIRA B, MARQUES A, RAMOS C, et al.Chemical composition and antibacterial and antioxidant properties of commercial essential oils[J]. Industrial Crops and Products, 2013, 43:587-595.
    [9]SáNCHEZ-CAMARGO A D P, VALDéS A, SULLINI G, et al. Two-step sequential supercritical fluid extracts from rosemary with enhanced anti-proliferative activity[J]. Journal of Functional Foods, 2014,11(11):293-303.
    [10]ZAMPINI I C, ARIAS M E, CUDMANI N, et al.Antibacterial potential of non-volatile constituents of Rosmarinus officinalis against 37 clinical isolates of multidrug-resistant bacteria[J].-BLACPMA, 2013,12(2):201-208.
    [11]夏田娟,毕良武,赵振东,等.鼠尾草酸的抗氧化活性及抑菌活性研究[J].天然产物研究与开发,2015, 27(1):35-40.
    [12]SOKOVI C M, GLAMO ?LIJA J, MARIN P D, et al. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model[J]. Molecules, 2010, 15(11):7532-7546.
    [13]DAHHAM S S, TABANA Y M, IQBAL M A, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpeneβ-caryophyllene from the essential oil of Aquilaria crassna[J]. Molecules,2015, 20(7):11808-11829.
    [14]DIAO W R, HU Q P, ZHANG H, et al. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel(Foeniculum vulgare Mill)[J]. Food Control, 2014,35(1):109-116.
    [15]蓝蔚青,车旭,谢晶,等.复合生物保鲜剂对荧光假单胞菌的抑菌活性及作用机理[J].中国食品学报,2016, 16(8):159-165.
    [16]宋丽雅,倪正,樊琳娜,等.花椒抑菌成分提取方法及抑菌机理研究[J].中国食品学报, 2016, 16(3):125-130.
    [17]松长青,周本宏,易慧兰,等.石榴皮鞣质的抗菌活性及其对金黄色葡萄球菌的抗菌机制[J].中国医院药学杂志, 2016, 36(4):259-265.
    [18]XU J G, LIU T, HU Q P, et al. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus[J]. Molecules, 2016, 21(9):1194.
    [19]ROMANO C S, ABADI K, REPETTO V, et al.Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives[J]. Food Chemistry, 2009, 115(2):456-461.
    [20]JORDAáN M J, LAX V, ROTA M C, et al. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis(L.)methanolic extracts[J]. Journal of Agricultural and Food Chemistry, 2012, 60(38):9603-9608.
    [21]MORENO S, SCHEYER T, ROMANO C S, et al.Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition[J].Free Radical Research, 2006, 40(2):223-231.
    [22]OJEDA-SANA A M, VAN BAREN C M, ELECHOSA M A, et al. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components[J]. Food Control, 2013,31(1):189-195.
    [23]李律.中药-壳聚糖混合物的抑菌效果及抗张强度的研究[D].唐山:华北理工大学, 2015.
    [24]ZHANG G, MEREDITH T C, KAHNE D. On the essentiality of lipopolysaccharide to gram-negative bacteria[J]. Current Opinion in Microbiology, 2013,16(6):779-785.
    [25]ZHAO C, SUN J, FANG C, et al. 1, 8-cineol attenuates LPS-induced acute pulmonary inflammation in mice[J]. Inflammation, 2014, 37(2):566-572.
    [26]ANJOS J L V D, NETO D D S, ALONSO A. Effects of 1,8-cineole on the dynamics of lipids and proteins of stratum corneum[J]. International Journal of Pharmaceutics, 2007, 345(1/2):81-87.
    [27]NIERHAUS K H. Mg2+, K+, and the ribosome[J].Journal of Bacteriology, 2014, 196(22):3817-3819.
    [28]DEMIDCHIK V, STRALTSOVA D, MEDVEDEV S S, et al. Stress-induced electrolyte leakage:the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment[J].Journal of Experimental Botany, 2014, 65(5):1259-1270.
    [29]YAO C, LI X, BI W, et al. Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO2[J]. Journal of Basic Microbiology,2014, 54(8):858-865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700