水分胁迫下氮形态对水稻根系孔隙度及水分吸收的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of nitrogen forms on root porosity and waterabsorption of rice under drought stress
  • 作者:杨秀霞 ; 燕辉 ; 周春火 ; 郭世伟
  • 英文作者:YANG Xiu-xia;YAN Hui;ZHOU Chun-huo;GUO Shi-wei;College of Land Resources and Environmental Sciences, Jiangxi Agricultural University;College of Resources and Environmental Sciences, Nanjing Agricultural University;
  • 关键词:水分胁迫 ; 氮素形态 ; 水稻根系 ; 孔隙度 ; 水分吸收
  • 英文关键词:water stress;;nitrogen forms;;rice root;;root porosity;;water absorption
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:江西农业大学国土资源与环境学院;南京农业大学资源与环境科学学院;
  • 出版日期:2019-03-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.173
  • 基金:国家自然科学基金(31460540,30871587);; 国家重点研发计划(2017YFD0200808)
  • 语种:中文;
  • 页:GHDQ201902022
  • 页数:6
  • CN:02
  • ISSN:61-1088/S
  • 分类号:150-155
摘要
采用室内营养液培养及PEG6000模拟水分胁迫的方法,研究不同氮素形态(NH■-N、NO■-N)和水分条件(正常水分条件、模拟水分胁迫条件)对籼稻(汕优63、扬稻6号)和粳稻(86优8、武运粳7号)根系孔隙度的影响及根系孔隙度与水分吸收的关系。结果表明:在正常水分条件下,籼稻品种根系伤流在铵态氮和硝态氮处理间均没有显著差异,粳稻品种供硝态氮处理后根系伤流液流速较供铵态氮处理高56%;在水分胁迫条件下,供硝态氮品种汕优63、扬稻6号、86优8、武运粳7号伤流量流速仅为供铵态氮品种的46%、29%、38%和77%,比在正常水分条件下分别显著降低了64%、76%、60%、70%。水分胁迫条件下,供铵态氮和供硝态氮品种根系水分吸收能力分别比其在正常水分条件下下降22%~30%和35%~44%。水分胁迫条件下,供硝态氮品种汕优63、扬稻6号、86优8、武运粳7号根系孔隙度分别比其在正常水分条件下增加267%、151%、133%和255%,而对铵态氮处理影响不显著。供硝态氮条件下水稻根系通气组织的发育程度与根系伤流液流速呈显著线性负相关关系,供铵态氮条件下二者之间没有相关性。因此,硝态氮营养条件下水稻根系孔隙度的增加可能是造成根系水分吸收下降的关键因素。
        Hydroponic experiment was conducted in a greenhouse in this study to explore the nitrogen(N) fertilizer forms, nitrate(NO_3~--N) and ammonium(NH~+_4-N), on the root porosity and water usage of rice plants. Water stress was simulated by treatment with polyethylene glycol(PEG, 10% in w/v, MW6000). Four rice varieties, indica(Shanyou 63 and Yangdao 6) and japonica(86 you 8 and Wuyunjing 7), were utilized in the experiment. The results showed that, under non-water stress conditions, there was no significant difference in root xylem sap flow rate on indica rice varieties fertilized with NH_4~+-N and NO_3~--N, while the rate on japonica rice varieties with NO_3~--N fertilization was 56% higher than that with NH_4~+-N. Compared with non-water stress conditions, however, the root xylem sap flow rate under water stress conditions dramatically reduced by 64%, 76%, 60%, and 70% on Shanyou 63, Yangdao 6, 86 you 8 and Wuyunjing 7 with NO_3~--N, while only 46%,29%,38% and 77% on the four varieties with NH_4~+-N, respectively. Under water stress, the water absorption capacity of the root significantly decreased by 22%~30% and 35%~44% for the varieties of Shanyou 63, Yangdao 6, 86 you 8 and Wuyunjing 7 with NH_4~+-N and NO_3~--N, respectively. Under water stress, root porosity increased by 267%, 151%, 133% and 255% respectively for the varieties of Shanyou 63, Yanddao 6, 86 you 8 and Wuyunjing 7 with NO_3~--N fertilization than that under non-water stress conditions. There was negligible effects on the plants with NH_4~+-N under the water stress conditions. Correlation analysis indicated that the root xylem sap flow rate was negatively correlated with root porosity(aerenchyma formation) in the plants with NO_3~--N, and there was no correlation between these two indexes with NH_4~+-N fertilization. Consequently, the increased root porosity might be a key factor for the decreased water absorption in the plants with NO_3~--N under water stress conditions.
引文
[1] 丁雷.氮素营养调节水稻水分状况和光合作用机制研究[D].南京:南京农业大学,2015.
    [2] 程建平,曹凑贵,蔡明历,等.水分胁迫与氮素营养对水稻生理特性的影响[J].干旱地区农业研究,2007,25(11):149-154.
    [3] Ahn H,Jung I,Shin S J,et al.Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice[J].Frontiers in Plant Science,2017,8:1044.
    [4] Makino A,Sato T,Nakano H,et al.Leaf photosynthesis,plant growth and nitrogen allocation in rice under different irradiances[J].Planta,1997,203(3):390-398.
    [5] Miyamoto N,Steudle E,Hirasawa T,et al.Hydraulic conductivity of rice roots[J].Journal of Experimental Botany,2001,52(1):1835-1846.
    [6] Wang G,Liu F,Xue S.Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings[J].Plant & Soil,2017,418(1-2):177-189.
    [7] Fan M S,Bai R Q,Zhao X F,et al.Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots[J].Journal of Integrative Plant Biology,2007,49(5):598-604.
    [8] Melchior W,Steudle E.Water transport in onion Allium cepa L.roots:Changes of axial and radial hydraulic conductivity during development[J].Plant Physiology,1993,101(4):1305-1315.
    [9] Rieger M,Litvin P.Root system hydraulic conductivity in species with contrasting root anatomy[J].Journal of Experimental Botany,1999,50(331):201-209.
    [10] He C J,Morgan P W,Drew M C.Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L.during aerenchyma formation[J].Plant Physiology,1992,98(1):137-142.
    [11] Lu Y,Wassmann R,Neue H U,et al.Impact of phosphorus supply on root exudation,aerenchyma formation and methane emission of rice plants[J].Biogeochemistry,1999,47(2):203-218.
    [12] Gao Y X,Li Y,Yang X X,et al.Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress[J].Plant Soil,2010,331(1-2):193-201.
    [13] Guo S W,Chen G,Zhou Y,et al.Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.)[J].Plant Soil,2007,296(1-2):115-124.
    [14] Guo S W,Zhou Y,Li Y,et al.Effects of different nitrogen form and water stress on water use efficiency of rice plants[J].Annals of Applied Biology,2008,153:127-134.
    [15] Li Y,Gao Y X,Ding L,et al.Ammonium enhances the tolerance of rice seedlings (Oryza sativa L.) to drought condition[J].Agricultural Water Management,2009,96(12):1746-1750.
    [16] Lu Z J,Neumann P M.Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root[J].Plant Physiology,1999,120(1):143-151.
    [17] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001:159-164.
    [18] Longstreth D J,Borkhsenious O N.Root cell ultrastructure in developing aerenchyma tissues of three wetland species[J].Annals of Botany,2000,86(3):641-646.
    [19] Khan A R.Root porosity of peanut under varying soil-water regimes[J].Journal of agronomy and crop science,1983,152-219.
    [20] 李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298.
    [21] Mu Z,Zhang S,Zhang L,et al.Hydraulic conductivity of whole root system is better than hydraulic conductivity of single root in correlation with the leaf water status of maize[J].Botanical Studies,2006,47(2):145-151.
    [22] Kong X,Luo Z,Dong H,et al.H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L.roots in the non-saline side under non-uniform root zone salinity[J].Journal of Experimental Botany,2016,67(8):2247-2261.
    [23] Steudle E.The cohesion-tension mechanism and the acquisition of water by plant roots[J].Annual Review of Plant Physiology and Plant Molecular Biology,2001,52(1):847-875.
    [24] Steudle E,Peterson C A.How does water get through roots?[J].Journal of Experimental Botany,1998,49(322):775-778.
    [25] Steudle E.Water uptake by plant roots:an integration of views[J].Plant Soil,2000,226(1):45-56.
    [26] Lu Z J,Neumann P M.Water-stressed maize,barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition[J].Journal of Experimental Botany,1998,49(329):1945-1952.
    [27] Maurel C.Aquaporins and water permeability of plant membranes[J].Annual Review of Plant Physiology Plant Molecular Biology,1997,48(1):399-429.
    [28] Steudle E,Henzler T.Water channels in plants:do basic concepts of water transport change[J].Journal of Experimental Botany,1995,46(9):1067-1076.
    [29] Wan X C,Steudle E,Hartung W.Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses):effects of ABA and of HgCl2[J].Journal of Experimental Botany,2004,55(396):411-422.
    [30] 宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J].植物学通报,2007,24(4):477-483.
    [31] Jackson M B,Armstrong W.Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submerge[J].Plant Biology,1999,1(3):274-287.
    [32] 曹宛虹,董亿,张劲松,等.水稻乙烯受体类似物基因的克隆及其表达特性[J].中国科学(C辑),2003,33(2):125-132.
    [33] Eshel A,Nielsen K L,Lynch J P.Screening bean genotypes for differences in phosphorus utilization efficiency[J].Israeli Journal Plant Science,1996,44:225-229.
    [34] 樊明寿,陈刚,孙国荣.缺磷玉米根内通气组织的发育时间及基因型差异[J].作物学报,2005,31(9):1120-1124.
    [35] He C,Finlayson S A,Drew M C,et al.Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impendence and hypoxia[J].Plant Physiology,1996,112(4):1679-1685.
    [36] Dong M F,Feng R W,Wang R G,et al.Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and As accumulation in rice plant tissues[J].Plant & Soil,2016,404(1-2):75-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700