用户名: 密码: 验证码:
Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction
  • 作者:Guifu ; ZHANG ; Vivek ; N.MAHALE ; Bryan ; J.PUTNAM ; Youcun ; QI ; Qing ; CAO ; ANDrew ; D.BYRD ; Petar ; BUKOVCIC ; Dusan ; S.ZRNIC ; Jidong ; GAO ; Ming ; XUE ; Youngsun ; JUNG ; Heather ; D.REEVES ; Pamela ; L.HEINSELMAN ; AlexANDer ; RYZHKOV ; Robert ; D.PALMER ; Pengfei ; ZHANG ; Mark ; WEBER ; Greg ; M.MCFARQUHAR ; Berrien ; MOORE ; III ; Yan ; ZHANG ; Jian ; ZHANG ; J.VIVEKANANDAN ; Yasser ; AL-RASHID ; Richard ; L.ICE ; Daniel ; S.BERKOWITZ ; Chong-chi ; TONG ; Caleb ; FULTON ; Richard ; J.DOVIAK
  • 英文作者:Guifu ZHANG;Vivek N.MAHALE;Bryan J.PUTNAM;Youcun QI;Qing CAO;ANDrew D.BYRD;Petar BUKOVCIC;Dusan S.ZRNIC;Jidong GAO;Ming XUE;Youngsun JUNG;Heather D.REEVES;Pamela L.HEINSELMAN;AlexANDer RYZHKOV;Robert D.PALMER;Pengfei ZHANG;Mark WEBER;Greg M.MCFARQUHAR;Berrien MOORE III;Yan ZHANG;Jian ZHANG;J.VIVEKANANDAN;Yasser AL-RASHID;Richard L.ICE;Daniel S.BERKOWITZ;Chong-chi TONG;Caleb FULTON;Richard J.DOVIAK;University of Oklahoma;NOAA/National Weather Service;Enterprise Electronics Corporation;NOAA/National Severe Storms Laboratory;National Center for Atmospheric Research;Raytheon Company;Radar Operations Center;
  • 英文关键词:weather radar polarimetry;;radar meteorology;;numerical weather prediction;;data assimilation;;microphysics parameterization;;forward operator
  • 中文刊名:DQJZ
  • 英文刊名:大气科学进展(英文版)
  • 机构:University of Oklahoma;NOAA/National Weather Service;Enterprise Electronics Corporation;NOAA/National Severe Storms Laboratory;National Center for Atmospheric Research;Raytheon Company;Radar Operations Center;
  • 出版日期:2019-04-26
  • 出版单位:Advances in Atmospheric Sciences
  • 年:2019
  • 期:v.36
  • 基金:supported by the NOAA (Grant Nos. NA16AOR4320115 and NA11OAR4320072);; NSF (Grant No. AGS-1341878)
  • 语种:英文;
  • 页:DQJZ201906001
  • 页数:18
  • CN:06
  • ISSN:11-1925/O4
  • 分类号:3-20
摘要
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.
        After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.
引文
Andri′c,J.,M.R.Kumjian,D.S.Zrni′c,J.M.Straka,and V.M.Melnikov,2013:Polarimetric Signatures above the Melting Layer in Winter Storms:An Observational and Modeling Study.Journal of Applied Meteorology and Climatology,52,682-700.
    Bluestein,H.B.,and Coauthors,2014:Radar in atmospheric sciences and related research:Current systems,emerging technology,and future needs.Bull.Amer.Meteor.Soc.,95,1850-1861,https://doi.org/10.1175/BAMS-D-13-00079.1.
    Brandes,E.A.,and K.Ikeda,2004:Freezing-level estimation with polarimetric radar.J.Appl.Meteor.,43,1541-1553,https://doi.org/10.1175/JAM2155.1.
    Brandes,E.A.,G.F.Zhang,and J.Vivekanandan,2002:Experiments in rainfall estimation with a polarimetric radar in a subtropical environment.J.Appl.Meteor.,41,674-685,https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.
    Bringi,V.N.,and V.Chandrasekar,2001:Polarimetric Doppler Weather Radar:Principles and Applications.Cambridge University Press,636 pp.
    Brown,B.R.,M.M.Bell,and A.J.Frambach,2016:Validation of simulated hurricane drop size distributions using polarimetric radar.Geophys.Res.Lett.,43(2),910-917,https://doi.org/10.1002/2015GL067278.
    Bukovˇci′c,P.,D.Zrni′c,and G.F.Zhang,2017:Winter precipitation liquid-ice phase transitions revealed with polarimetric radar and 2DVD observations in central Oklahoma.Journal of Applied Meteorology and Climatology,56(5),1345-1363,https://doi.org/10.1175/JAMC-D-16-0239.1.
    Byrd,A.,C.Fulton,R.Palmer,S.Islam,D.Zrnic,R.Doviak,R.Zhang,and G.Zhang,2017:First weather observations with a cylindrical polarimetric phased array radar.Internal Technical Report.
    Cao,Q.,G.F.Zhang,E.A.Brandes,and T.J.Schuur,2010:Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach.Journal of Applied Meteorology and Climatology,49,973-990,https://doi.org/10.1175/2009JAMC2227.1.
    Cao,Q.,G.F.Zhang,and M.Xue,2013:A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation.Journal of Applied Meteorology and Climatology,52,169-185,https://doi.org/10.1175/JAMC-D-12-0101.1.
    Carlin,J.T.,A.V.Ryzhkov,J.C.Snyder,and A.Khain,2016:Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation:Utility of current relations and potential benefits of polarimetry.Mon.Wea.Rev.,144,2981-3001,https://doi.org/10.1175/MWR-D-15-0423.1.
    Carlin,J.T.,J.D.Gao,J.C.Snyder,and A.V.Ryzhkov,2017:Assimilation of ZDRcolumns for improving the spinup and forecast of convective storms in storm-scale models:Proofof-concept experiments.Mon.Wea.Rev.,145,5033-5057,https://doi.org/10.1175/MWR-D-17-0103.1.
    Chandrasekar V.,R.Ker¨anen,S.Lim,and D.Moisseev,2013:Recent advances in classification of observations from dual polarization weather radars.Atmospheric Research,119,97-111,https://doi.org/10.1016/j.atmosres.2011.08.014.
    Chang,W.-Y.,T.-C.C.Wang,and P.-L.Lin,2009:Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2Dvideo disdrometer and NCU C-band polarimetric radar.J.Atmos.Oceanic Technol.,26(10),1973-1993,https://doi.org/10.1175/2009JTECHA1236.1.
    Chang,W.-Y.,J.Vivekanandan,K.Ikeda,and P.-L.Lin,2016:Quantitative precipitation estimation of the epic 2013Colorado flood event:Polarization radar-based variational scheme.Journal of Applied Meteorology and Climatology,55(7),1477-1495,https://doi.org/10.1175/JAMC-D-15-0222.1.
    Chen,G.,and Coauthors,2017:Improving polarimetric C-band radar rainfall estimation with two-dimensional video disdrometer observations in Eastern China.Journal of Hydrometeorology,18(5),1375-1391,https://doi.org/10.1175/JHM-D-16-0215.1.
    Chen,H.N.,and V.Chandrasekar,2015:The quantitative precipitation estimation system for dallas-fort worth(DFW)urban remote sensing network.J.Hydrol.,531,259-271,https://doi.org/10.1016/j.jhydrol.2015.05.040.
    Dawson,D.T.,M.Xue,J.A.Milbrandt,and M.K.Yau,2010:Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms.Mon.Wea.Rev.,138,1152-1171,https://doi.org/10.1175/2009MWR2956.1.
    Dawson,D.T.,M.Xue,J.A.Milbrandt,and A.Shapiro,2015:Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics.Part I:Storm-and tornado-scale numerical forecasts.Mon.Wea.Rev.,143,2241-2265,https://doi.org/10.1175/MWR-D-14-00279.1.
    Dawson,D.T.,E.R.Mansell,Y.Jung,L.J.Wicker,M.R.Kumjian,and M.Xue,2014:Low-level ZDRsignatures in supercell forward flanks:The role of size sorting and melting of hail.J.Atmos.Sci.,71,276-299,https://doi.org/10.1175/JAS-D-13-0118.1.
    Didlake,A.C.,and M.R.Kumjian,2017:Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur(2014).Mon.Wea.Rev.,145(11),4521-4541,https://doi.org/10.1175/MWR-D-17-0035.1.
    Dolan,B.,S.A.Rutledge,S.Lim,V.Chandrasekar,and M.Thurai,2013:A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset.Journal of Applied Meteorology and Climatology,52,2162-2186,https://doi.org/10.1175/JAMC-D-12-0275.1.
    Doviak,R.J.,and D.S.Zrni′c,1993:Doppler Radar and Weather Observations.2nd ed.Academic Press,562 pp.
    Doviak,R.J.,V.Bringi,A.Ryzhkov,A.Zahrai,and D.S.Zrni′c,2000:Considerations for polarimetric upgrades to operational WSR-88D radars.J.Atmos.Oceanic Technol.,17,257-278,https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.
    Eccles,P.J.,and D.Atlas,1973:A dual-wavelength radar hail detector.J.Appl.Meteor.,12(5),847-854,https://doi.org/10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2.
    Figueras i Ventura,J.,and P.Tabary,2013:The new French operational polarimetric radar rainfall rate product.Journal of Applied Meteorology and Climatology,52(8),1817-1835,https://doi.org/10.1175/JAMC-D-12-0179.1.
    Finlon,J.A.,G.M.McFarquhar,R.M.Rauber,D.M.Plummer,B.F.Jewett,D.Leon,and K.R.Knupp,2016:A comparison of X-band polarization parameters with in situ microphysical measurements in the comma head of two winter cyclones.Journal of Applied Meteorology and Climatology,55,2549-2574,https://doi.org/10.1175/JAMC-D-16-0059.1.
    Fulton,C.,and Coauthors,2017:Cylindrical polarimetric phased array radar:Beamforming and calibration for weather applications.IEEE Trans.Geosci.Remote Sens.,55(5),2827-2841,https://doi.org/10.1109/TGRS.2017.2655023.
    Gao,J.D.,and D.J.Stensrud,2012:Assimilation of reflectivity data in a convective-scale,cycled 3DVAR framework with hydrometeor classification.J.Atmos.Sci.,69(3),1054-1065,https://doi.org/10.1175/JAS-D-11-0162.1.
    Ge,G.Q.,J.D.Gao,and M.Xue,2013:Impacts of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method.Mon.Wea.Rev.,141(8),2759-2777,https://doi.org/10.1175/MWR-D-12-00193.1.
    Giangrande,S.E.,and A.V.Ryzhkov,2008.Estimation of rainfall based on the results of polarimetric echo classification.Journal of Applied Meteorology and Climatology,47,2445-2462,https://doi.org/10.1175/2008JAMC1753.1.
    Giangrande,S.E.,J.M.Krause,and A.V.Ryzhkov,2008:Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar.Journal of Applied Meteorology and Climatology,47,1354-1364,https://doi.org/10.1175/2007JAMC1634.1.
    Giangrande,S.E.,R.McGraw,and L.Lei,2013:An application of linear programming to polarimetric radar differential phase processing.J.Atmos.Oceanic Technol.,30,1716-1729,https://doi.org/10.1175/JTECH-D-12-00147.1.
    Gosset,M.,and H.Sauvageot,1992:A dual-wavelength radar method for ice-water characterization in mixed-phase clouds.J.Atmos.Oceanic Technol.,9,538-547,https://doi.org/10.1175/1520-0426(1992)009<0538:ADWRMF>2.0.CO;2.
    Griffin,E.M.,T.J.Schuur,and A.V.Ryzhkov,2018:A polarimetric analysis of ice microphysical processes in snow,using quasi-vertical profiles.Journal of Applied Meteorology and Climatology,57,31-50,https://doi.org/10.1175/JAMC-D-17-0033.1.
    Heinselman,P.L.,and S.M.Torres,2011:High-temporalresolution capabilities of the national weather radar testbed phased-array radar.Journal of Applied Meteorology and Climatology,50,579-593,https://doi.org/10.1175/2010JAMC2588.1.
    Hogan,R.J.,2007:A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar.Journal of Applied Meteorology and Climatology,46,1544-1564,https://doi.org/10.1175/JAM2550.1.
    Hopf,A.P.,J.L.Salazar,R.Medina,V.Venkatesh,E.J.Knapp,S.J.Frasier,and D.J.McLaughlin,2009:CASA phased array radar system description,simulation and products.Proc.2009IEEE Int.Geoscience and Remote Sensing Symposium,Cape Town,South Africa,IEEE,https://doi.org/10.1109/IGARSS.2009.5418262.
    Hu,M.,M.Xue,and K.Brewster,2006:3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth,Texas,Tornadic thunderstorms.Part I:Cloud analysis and its impact.Mon.Wea.Rev.,134(2),675-698,https://doi.org/10.1175/MWR3092.1.
    Huang,H.,G.F.Zhang,K.Zhao,and S.E.Giangrande,2017:Ahybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints.IEEETrans.Geosci.Remote Sens.,55(1),96-111,https://doi.org/10.1109/TGRS.2016.2596295.
    Huffman,G.J.,R.F.Adler,D.T.Bolvin,G.Gu,E.J.Nelkin,K.P.Bowman,E.F.Stocker,and D.B.Wolff,2007:The TRMM multi-satellite precipitation analysis:Quasi-global,multi-year,combined-sensor precipitation estimates at fine scale.Journal of Hydrometeorology,8,38-55.
    Ice,R.L.,A.K.Heck,J.G.Cunningham,and W.D.Zittel,2014:Challenges of polarimetric weather radar calibration.Proc.8th European Conference on Radar in Meteorology and Hydrology,Germany,Garmisch-Partenkirchen.
    Jameson,A.R.,1991:Polarization radar measurements in rain at 5and 9 GHz.J.Appl.Meteor.,30,1500-1513,https://doi.org/10.1175/1520-0450(1991)030<1500:PRMIRA>2.0.CO;2.
    Johnson,M.,Y.Jung,D.T.Dawson II,and M.Xue,2016:Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF.Mon.Wea.Rev.,144,971-996,https://doi.org/10.1175/MWR-D-15-0233.1.
    Jordan,R.L.,B.L.Huneycutt,and M.Werner,1995:The SIR-C/X-SAR synthetic aperture radar system.IEEE Trans.Geosci.Remote Sens.,33(4),829-839,https://doi.org/10.1109/36.406669.
    Jung,Y.,G.F.Zhang,and M.Xue,2008a:Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter.Part I:Observation operators for reflectivity and polarimetric variables.Mon.Wea.Rev.,136(6),2228-2245,https://doi.org/10.1175/2007MWR2083.1.
    Jung,Y.,M.Xue,G.F.Zhang,and J.M.Straka,2008b:Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter.Part II:Impact of polarimetric data on storm analysis.Mon.Wea.Rev.,136(6),2246-2260,https://doi.org/10.1175/2007MWR2288.1.
    Jung,Y.,M.Xue,and G.F.Zhang,2010:Simulations of polarimetric radar signatures of a supercell storm using a twomoment bulk microphysics scheme.Journal of Applied Meteorology and Climatology,49(1),146-163,https://doi.org/10.1175/2009JAMC2178.1.
    Jung,Y.,M.Xue,and M.J.Tong,2012:Ensemble Kalman filter analyses of the 29-30 may 2004 Oklahoma Tornadic thunderstorm using one-and two-moment bulk microphysics schemes,with verification against polarimetric radar data.Mon.Wea.Rev.,140(5),1457-1475,https://doi.org/10.1175/MWR-D-11-00032.1.
    Kalnay,E.,2003:Atmospheric Modeling,Data Assimilation and Predictability.Cambridge University Press,368 pp.
    Karimkashi,S.,and G.F.Zhang,2015:Optimizing radiation patterns of a cylindrical polarimetric phased-array radar for multimissions.IEEE Trans.Geosci.Remote Sens.,53,2810-2818,https://doi.org/10.1109/TGRS.2014.2365362.
    Khain,A.P.,and Coauthors,2015:Representation of microphysical processes in cloud-resolving models:Spectral(bin)microphysics versus bulk parameterization.Rev.Geophys.,53,247-322,https://doi.org/10.1002/2014RG000468.
    Kumjian,M.R.,2013:Principles and applications of dualpolarization weather radar.Part 2:Warm and cold season applications.Journal of Operational Meteorology,1(20),243-264,https://doi.org/10.15191/nwajom.2013.0120.
    Kumjian,M.R.,and A.V.Ryzhkov,2008:Polarimetric signatures in supercell thunderstorms.Journal of Applied Meteorology and Climatology,47,1940-1961,https://doi.org/10.1175/2007JAMC1874.1.
    Kumjian,M.R.,A.P.Khain,N.Benmoshe,E.Ilotoviz,A.V.Ryzhkov,and V.T.J.Phillips,2014:The anatomy and physics of ZDRcolumns:Investigating a polarimetric radar signature with a spectral bin microphysical model.Journal of Applied Meteorology and Climatology,53(7),1820-1843,https://doi.org/10.1175/JAMC-D-13-0354.1.
    Li,X.L.,and J.R.Mecikalski,2010:Assimilation of the dualpolarization Doppler radar data for a convective storm with a warm-rain radar forward operator.J.Geophys.Res.,115,D16208,https://doi.org/10.1029/2009JD013666.
    Li,X.L.,J.R.Mecikalski,and D.Posselt,2017:An ice-phase microphysics forward model and preliminary results of polarimetric radar data assimilation.Mon.Wea.Rev.,145,683-708,https://doi.org/10.1175/MWR-D-16-0035.1.
    Liu,H.P.,and V.Chandrasekar,2000:Classification of hydrometeors based on polarimetric radar measurements:Development of fuzzy logic and neuro-fuzzy systems,and in situ verification.J.Atmos.Oceanic Technol.,17,140-164,https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.
    Lorenc,A.C.,1986:Analysis methods for numerical weather prediction.Quart.J.Roy.Meteor.Soc.,112,1177-1194,https://doi.org/10.1002/qj.49711247414.
    Mahale,V.,G.Zhang,M.Xue,J.Gao,and H.D.Reeves,2019:Variational retrieval of rain microphysics and related parameters from polarimetric radar data with a parameterized operator.J.Atmos.Oceanic Technol.,in-review.
    May,P.T.,J.D.Kepert,and T.D.Keenan,2008:Polarimetric radar observations of the persistently asymmetric structure of tropical cyclone Ingrid.Mon.Wea.Rev.,136(2),616-630,https://doi.org/10.1175/2007MWR2077.1.
    May,P.T.,T.D.Keenan,D.S.Zrni′c,L.D.Carey,and S.A.Rutledge,1999:Polarimetric radar measurements of tropical rain at a 5-cm wavelength.J.Appl.Meteor.,38,750-765,https://doi.org/10.1175/1520-0450(1999)038<0750:PRMOTR>2.0.CO;2.
    Milbrandt,J.A.,and M.K.Yau,2005a:A multimoment bulk microphysics parameterization.Part I:Analysis of the role of the spectral shape parameter.J.Atmos.Sci.,62,3051-3064,https://doi.org/10.1175/JAS3534.1.
    Milbrandt,J.A.,and M.K.Yau,2005b.A multimoment bulk microphysics parameterization.Part II:A proposed threemoment closure and scheme description.J.Atmos.Sci.,62,3065-3081,https://doi.org/10.1175/JAS3535.1.
    Morrison,H.,and J.Milbrandt,2011:Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations.Mon.Wea.Rev.,139,1103-1130,https://doi.org/10.1175/2010MWR3433.1.
    Morrison,H.,G.Thompson,and V.Tatarskii,2009:Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of oneand two-moment schemes.Mon.Wea.Rev.,137,991-1007,https://doi.org/10.1175/2008MWR2556.1.
    Morrison,H.,J.A.Curry,and V.I.Khvorostyanov,2005:A new double-moment microphysics parameterization for application in cloud and climate models.Part I:Description.J.Atmos.Sci.,62,1665-1677,https://doi.org/10.1175/JAS3446.1.
    Ortega,K.L.,J.M.Krause,and A.V Ryzhkov,2016:Polarimetric radar characteristics of melting hail.Part III:Validation of the algorithm for hail size discrimination.Journal of Applied Meteorology and Climatology,55,829-848,https://doi.org/10.1175/JAMC-D-15-0203.1.
    Overeem,A.,H.Leijnse,and R.Uijlenhoet,2013.Country-wide rainfall maps from cellular communication networks.Proc.Natl.Acad.Sci.USA,110(8),2741-2745,https://doi.org/10.1073/pnas.1217961110.
    Park,H.S.,A.V.Ryzhkov,D.S.Zrni′c,and K.-E.Kim,2009:The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea.Forecasting,24(3),730-748,https://doi.org/10.1175/2008WAF2222205.1.
    Pfeifer,M.,G.C.Craig,M.Hagen,and C.Keil,2008:A polarimetric radar forward operator for model evaluation.Journal of Applied Meteorology and Climatology,47(12),3202-3220,https://doi.org/10.1175/2008JAMC1793.1.
    Posselt,D.J.,X.L.Li,S.A.Tushaus,and J.R.Mecikalski,2015:Assimilation of dual-polarization radar observations in mixed-and ice-phase regions of convective storms:Information content and forward model errors.Mon.Wea.Rev.,143,2611-2636,https://doi.org/10.1175/MWR-D-14-00347.1.
    Putnam,B.J.,M.Xue,Y.Jung,N.Snook,and G.F.Zhang,2014:The analysis and prediction of microphysical states and polarimetric radar variables in a mesoscale convective system using double-moment microphysics,multinetwork radar data,and the ensemble Kalman filter.Mon.Wea.Rev.,142(1),141-162,https://doi.org/10.1175/MWR-D-13-00042.1.
    Putnam,B.J.,M.Xue,Y.Jung,G.F.Zhang,and F.Y.Kong,2017b:Simulation of polarimetric radar variables from 2013CAPS spring experiment storm-scale ensemble forecasts and evaluation of microphysics schemes.Mon.Wea.Rev.,145,49-73,https://doi.org/10.1175/MWR-D-15-0415.1.
    Putnam,B.J.,M.Xue,Y.Jung,N.A.Snook,and G.F.Zhang,2017a:Ensemble probabilistic prediction of a mesoscale convective system and associated polarimetric radar variables using single-moment and double-moment microphysics schemes and EnKF radar data assimilation.Mon.Wea.Rev.,145,2257-2279,https://doi.org/10.1175/MWR-D-16-0162.1.
    Putnam,B.J.,M.Xue,Y.Jung,N.A.Snook,and G.Zhang,2019:EnKF assimilation of polarimetric radar observations for the20 may 2013 Oklahoma Tornadic Supercell case.Mon.Wea.Rev.(in press)
    Rauber,R.M.,and Coauthors,2007:Rain in shallow cumulus over the ocean:The Rico campaign.Bull.Amer.Meteor.Soc.,88,1912-1928,https://doi.org/10.1175/BAMS-88-12-1912.
    Reeves,H.D.,2016:The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type.Wea.Forecasting,31,1961-1971,https://doi.org/10.1175/WAF-D-16-0068.1.
    Reeves,H.D.,K.L.Elmore,A.Ryzhkov,T.Schuur,and J.Krause,2014:Sources of uncertainty in precipitation-type forecasting.Wea.Forecasting,29,936-953,https://doi.org/10.1175/WAF-D-14-00007.1.
    Rodgers,C.D.,2000:Inverse Methods for Atmospheric Sounding:Theory and Practice.World Scientific Press,258 pp.
    Romine,G.S.,D.W.Burgess,and R.B.Wilhelmson,2008:Adual-polarization-radar-based assessment of the 8 May 2003Oklahoma City area tornadic supercell.Mon.Wea.Rev.,136,2849-2870,https://doi.org/10.1175/2008MWR2330.1.
    Ryzhkov,A.,and D.Zrni′c,1996.Assessment of rainfall measurement that uses specific differential phase.J.Appl.Meteor.,35,2080-2090,https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.
    Ryzhkov,A.,M.Pinsky,A.Pokrovsky,and A.Khain,2011:Polarimetric radar observation operator for a cloud model with spectral microphysics.Journal of Applied Meteorology and Climatology,50(4),873-894,https://doi.org/10.1175/2010JAMC2363.1.
    Ryzhkov,A.,M.Diederich,P.F.Zhang,and C.Simmer,2014:Potential utilization of specific attenuation for rainfall estimation,mitigation of partial beam blockage,and radar networking.J.Atmos.Oceanic Technol.,31,599-619,https://doi.org/10.1175/JTECH-D-13-00038.1.
    Ryzhkov,A.V.,and D.S.Zrni′c,1995.Comparison of dualpolarization radar estimators of rain.J.Atmos.Oceanic Technol.,12,249-256,https://doi.org/10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.
    Ryzhkov,A.V.,T.J.Schuur,D.W.Burgess,and D.S.Zrnic,2005:Polarimetric tornado detection.J.Appl.Meteor.,44,557-570,https://doi.org/10.1175/JAM2235.1.
    Ryzhkov,A.V.,M.R.Kumjian,S.M.Ganson,and A.P.Khain,2013a:Polarimetric radar characteristics of melting hail.Part I:Theoretical simulations using spectral microphysical modeling.Journal of Applied Meteorology and Climatology,52(12),2849-2870,https://doi.org/10.1175/JAMC-D-13-073.1.
    Ryzhkov,A.V.,M.R.Kumjian,S.M.Ganson,and P.F.Zhang,2013b:Polarimetric radar characteristics of melting hail.Part II:Practical implications.Journal of Applied Meteorology and Climatology,52(12),2871-2886,https://doi.org/10.1175/JAMC-D-13-074.1.
    Sachidananda,M.,and D.S.Zrni′c,1987:Rain rate estimates from differential polarization measurements.J.Atmos.Oceanic Technol.,4,588-598,https://doi.org/10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2.
    Saeidi-Manesh,H.,M.Mirmozafari,and G.Zhang,2017:Low cross-polarisation high-isolation frequency scanning aperture coupled microstrip patch antenna array with matched dualpolarisation radiation patterns.Electronics Letters,53(14),901-902,https://doi.org/10.1049/el.2017.1282.
    Seliga,T.A.,and V.N.Bringi,1976:Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation.J.Appl.Meteor.,15,69-76,https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.
    Seliga,T.A.,V.N.Bringi,and H.H.Al-Khatib,1979:Differential reflectivity measurements in rain:First experiments.IEEETransactions on Geoscience Electronics,17,240-244,https://doi.org/10.1109/TGE.1979.294652.
    Snook,N.,Y.Jung,J.Brotzge,B.Putnam,and M.Xue,2016:Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013.Wea.Forecasting,31,811-825,https://doi.org/10.1175/WAF-D-15-0152.1.
    Snyder,J.C.,A.V.Ryzhkov,M.R.Kumjian,A.P.Khain,and J.Picca,2015:A ZDRcolumn detection algorithm to examine convective storm updrafts.Wea.Forecasting,30(6),1819-1844,https://doi.org/10.1175/WAF-D-15-0068.1.
    Stailey J.E.,and K.D.Hondl,2016:Multifunction phased array radar for aircraft and weather surveillance.Proceedings of the IEEE,104(3),649-659,https://doi.org/10.1109/JPROC.2015.2491179.
    Straka,J.M.,1996:Hydrometeor fields in a supercell storm as deduced from dual-polarization radar.Preprints,18th Conf.on Severe Local Storms,San Francisco,CA,Amer.Meteor.Soc.,551-554.
    Straka,J.M.,and D.S.Zrni′c,1993:An algorithm to deduce hydrometeor types and contents from multiparameter radar data.Preprints,26th Int.Conf.on Radar Meteorology,Norman,OK,Amer.Meteor.Soc.,513-515.
    Straka,J.M.,D.S.Zrni′c,and A.V.Ryzhkov,2000:Bulk hydrometeor classification and quantification using polarimetric radar data:Synthesis of relations.J.Appl.Meteor.,39,1341-1372,https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.
    Sun,J.Z.,and A.N.Crook,1997:Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint.Part I:Model development and simulated data experiments.J.Atmos.Sci.,54(12),1642-1661,https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
    Sun,J.Z.,and N.A.Crook,1998:Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint.Part II:Retrieval experiments of an observed Florida convective storm.J.Atmos.Sci.,55(5),835-852,https://doi.org/10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.
    Ulbrich,C.W.,and D.Atlas,1984:Assessment of the contribution of differential polarization to improved rainfall measurements.Radio Sci.,19(1),49-57,https://doi.org/10.1029/RS019i001p00049.
    Van Den Broeke,M.S.,and S.T.Jauernic,2014:Spatial and temporal characteristics of polarimetric tornadic debris signatures Journal of Applied Meteorology and Climatology,53,2217-2231,https://doi.org/10.1175/JAMC-D-14-0094.1.
    Vivekanandan,J.,D.S.Zrnic,S.M.Ellis,R.Oye,A.V.Ryzhkov,and J.Straka,1999:Cloud microphysics retrieval using S-band dual-polarization radar measurements.Bull.Amer.Meteor.Soc.,80(3),381-388,https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.
    Vivekanandan,J.,W.M.Adams,and V.N.Bringi,1991:Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions.J.Appl.Meteor.,30,1053-1063,https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.
    Waterman,P.C.,1965:Matrix formulation of electromagnetic scattering.Proceedings of the IEEE,53,805-812,https://doi.org/10.1109/PROC.1965.4058.
    Weber,M.E.,J.Y.N.Cho,J.S.Herd,J.M.Flavin,W.E.Benner,and G.S.Torok,2007:The next-generation multimission U.S.surveillance radar network.Bull.Amer.Meteor.Soc.,88,1739-1752,https://doi.org/10.1175/BAMS-88-11-1739.
    Wen,G.,A.Protat,P.T.May,X.Z.Wang,and W.Moran,2015:Cluster-based method for hydrometeor classification using polarimetric variables.Part I:Interpretation and analysis.J.Atmos.Oceanic Technol.,32,1320-1340,https://doi.org/10.1175/JTECH-D-13-00178.1.
    Wen,G.,A.Protat,P.T.May,W.Moran,and M.Dixon,2016:Cluster-based method for hydrometeor classification using polarimetric variables.Part II:Classification.J.Atmos.Oceanic Technol.,33,45-60,https://doi.org/10.1175/JTECH-D-14-00084.1.
    Wheatley,D.M.,N.Yussouf,and D.J.Stensrud,2014:Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes.Mon.Wea.Rev.,142,3243-3263,https://doi.org/10.1175/MWR-D-13-00260.1.
    Wu,B.,J.Verlinde,and J.Z.Sun,2000:Dynamical and microphysical retrievals from doppler radar observations of a deep convective cloud.J.Atmos.Sci.,57(2),262-283,https://doi.org/10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2.
    Yoshikawa,E.,V.Chandrasekar,and T.Ushio,2014.Raindrop size distribution(DSD)retrieval for X-band dualpolarization radar.J.Atmos.Oceanic Technol.,31(2),387-403,https://doi.org/10.1175/JTECH-D-12-00248.1.
    Yussouf,N.,and D.J.Stensrud,2010:Impact of phased-array radar observations over a short assimilation period:Observing system simulation experiments using an ensemble Kalman filter.Mon.Wea.Rev.,138,517-538,https://doi.org/10.1175/2009MWR2925.1.
    Yussouf,N.,D.C.Dowell,L.J.Wicker,K.H.Knopfmeier,and D.M.Wheatley,2015:Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama.Mon.Wea.Rev.,143,3044-3066,https://doi.org/10.1175/MWR-D-14-00268.1.
    Yussouf,N.,E.R.Mansell,L.J.Wicker,D.M.Wheatley,and D.J.Stensrud,2013:The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma city tornadic supercell storm using single-and double-moment microphysics schemes.Mon.Wea.Rev.,141,3388-3412,https://doi.org/10.1175/MWR-D-12-00237.1.
    Zhang,G.F.,2016:Weather Radar Polarimetry.CRC Press,304pp.
    Zhang,G.F.,J.Z.Sun,and E.A.Brandes,2006:Improving parameterization of rain microphysics with disdrometer and radar observations.J.Atmos.Sci.,63,1273-1290,https://doi.org/10.1175/JAS3680.1.
    Zhang,G.F.,R.J.Doviak,D.S.Zrnic,J.Crain,D.Staiman,and Y.Al-Rashid,2009:Phased array radar polarimetry for weather sensing:A theoretical formulation for bias corrections.IEEE Trans.Geosci.Remote Sens.,47,3679-3689,https://doi.org/10.1109/TGRS.2009.2029332.
    Zhang,G.F.,R.J.Doviak,D.S.Zrni′c,R.Palmer,L.Lei,and Y.Al-Rashid,2011:Polarimetric phased-array radar for weather measurement:A planar or cylindrical configuration?J.Atmos.Oceanic Technol.,28,63-73,https://doi.org/10.1175/2010JTECHA1470.1.
    Zhang,J.,and Coauthors,2016:Multi-radar multi-sensor(MRMS)quantitative precipitation estimation:Initial operating capabilities.Bull.Amer.Meteor.Soc.,97,621-638,https://doi.org/10.1175/BAMS-D-14-00174.1.
    Zhang,J.,and Coauthors,2017:MRMS dual-polarization radar synthetic QPE.Proc.38th Conf.Radar Meteorology,28 August-1 September 2017,Chicago,AMS.
    Zrnic,D.S.,and K.Aydin,1992:Polarimetric signatures of precipitation.Applied Computational Electromagnetics Society(ACES)Newsletter,7(2),12-14.
    Zrnic,D.S.,and A.V.Ryzhkov,1999:Polarimetry for weather surveillance radars.Bull.Amer.Meteor.Soc.,80,389-406,https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.
    Zrnic,D.S.,V.M.Melnikov,and J.K.Carter,2006:Calibrating differential reflectivity on the WSR-88D.J.Atmos.Oceanic Technol.,23,944-951,https://doi.org/10.1175/JTECH1893.1.
    Zrnic,D.S.,and Coauthors,2007:Agile-beam phased array radar for weather observations.Bull.Amer.Meteor.Soc.,88,1753-1766,https://doi.org/10.1175/BAMS-88-11-1753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700