用户名: 密码: 验证码:
云南抚仙湖沉积物粒度分维特征及环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Features and environmental significance of grain-size fractal dimension of lacustrine deposits in Fuxian Lake of Yunnan Province
  • 作者:武梦娟 ; 牛洁 ; 张虎才 ; 张文翔 ; 段立曾 ; 王黎明
  • 英文作者:WU Meng-juan;NIU Jie;ZHANG Hu-cai;ZHANG Wen-xiang;DUAN Li-zeng;WANG Li-ming;Yunnan Key Laboratory of Plateau Geographical Process and Environmental Change, Yunnan Normal University;School of Resource Environment and Earth Science, Yunnan University;
  • 关键词:湖相沉积物 ; 粒度分维值 ; 人类活动 ; 西南季风 ; 抚仙湖
  • 英文关键词:lacustrine sediments;;grain-size fractal dimension;;human activities;;Southwest monsoon;;Fuxian Lake
  • 中文刊名:YNDZ
  • 英文刊名:Journal of Yunnan University(Natural Sciences Edition)
  • 机构:云南师范大学云南省高原地理过程与环境变化重点实验室;云南大学资源环境与地理科学学院;
  • 出版日期:2019-07-10
  • 出版单位:云南大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.202
  • 基金:云南省中青年学术技术带头人后备人才项目(2015HB029);; 国家自然科学基金(4166104,41771238);; 云南省科技领军人才培育计划(2015HA024)
  • 语种:中文;
  • 页:YNDZ201904013
  • 页数:8
  • CN:04
  • ISSN:53-1045/N
  • 分类号:100-107
摘要
通过对抚仙湖沉积物粒度特征的研究,分析了湖泊沉积物粒度指标与分维值的变化特征及其相关性,探讨了深水湖泊沉积物粒度分维特征指示的环境意义。结果表明:抚仙湖沉积物主要由粉砂和黏土质粉砂组成,分别约占14.71%和85.29%;湖泊沉积物分选性较差,呈极负偏态,峰态从很窄到极窄,平均粒径变幅较小,在7.10~8.45μm之间波动,均值为7.76μm;其分维值的变化范围为1.81~2.76,较其它粒度参数显著,均值为2.36,所对应的相关系数为0.94~0.99,指示了抚仙湖沉积物粒度分布具有显著分形特征。同时,抚仙湖沉积物分维值与平均粒径、分选系数、峰态间存在显著的正相关关系,说明湖泊搬运营力与区域沉积环境的变化、粒度分维值均具有较好的响应。通过对比抚仙湖流域自1700年来人类活动的记录发现,频繁的人类活动导致流域变化均与湖泊沉积物中记录的分维值极值具有较好的对应。因此,分形研究在深水湖泊中的应用,将为进一步研究区域沉积环境特征提供科学依据。
        Based on the study of the characteristics of grain sizes of the sediments in Fuxian Lake, the following are analyzed and explored: grain-size index, variation characteristics of fractal dimension and their correlation of lacustrine deposits; environmental significance of grain-size fractal dimension of deep lake sediments. The results show that the sediments of Fuxian Lake are mainly composed of silt and clayey silt,respectively accounting for 14.71% and 85.29%. There exist the features of poor sorting, negative skewness and narrow kurtosis in the lake sediments, and the varied range of lake grain-size was small, from 7.10 to 8.45 μm, with an average of 7.76 μm. The fractal dimension of sediments ranges between 1.81 and 2.76, with an average of 2.36.The correlation coefficient(R) between the fractal dimension and the other parameters(e.g. average particle sizes,sorting coefficients and kurtosis) is 0.94—0.99, which exhibits the significant fractal features of distribution of grain size sediments in Fuxian Lake. Meanwhile, there exists significant positive correlation between fractal dimension of sediments and average grain-size, sorting coefficient, and kurtosis; this positive correlation indicates that the change of the transport capacity and the sedimentary environment of the lake catchment, and the fractal dimension of the grain-size could be considered as a sensible means to study regional environmental change. By comparing the records of human activities in Fuxian Lake catchment during the past 1700 years, it indicates that the extreme values of fractal dimension in lake sediments correctly recorded the frequent human activities in the catchment. Therefore, the application of fractal research in deep-water lakes will provide scientific basis for further study of environmental attributes of regional sediments.
引文
[1]An Z,Clemens S C,Shen J,et al.Glacial-interglacial Indian summer monsoon dynamics[J].Science,2011,333(6043):719-723.DOI:10.1126/science.1203752.
    [2]张文翔,明庆忠,牛洁,等.高原城市水源地生态补偿额度核算及机制研究-以昆明松花坝水源地为例[J].地理研究,2017,36(2):373-382.Zhang W X,Ming Q Z,Niu J,et al.Calculation and mechanisms for ecological compensation credits in the drinking water source region of plateau cities:A case study from the Songhuaba Reservoir region of Kunming[J].Geographical Research,2017,36(2):373-382.
    [3]Zhang Y D,Su Y L,Liu Z W,et al.Long-chain branched/cyclic alkanes in recent sediment of Fuxian Lake and their environmental implications[J].Chinese Science Bulletin,2014,59(11):1 139-1 150.
    [4]吴汉,常凤琴,张虎才,等.泸沽湖表层沉积物粒度空间分布特征及其影响因素[J].沉积学报,2016,34(4):679-687.Wu H,Chang F Q,Zhang H C,et al.Grain-size distribution patterns of the surface sediments and their influential factors in Lugu Lake[J].Acta Sedimentologic Sinica,2016,34(4):679-687.
    [5]Zhang W,Niu J,Ming Q,et al.Holocene climatic fluctuations and periodic changes in the Asian Southwest monsoon region[J].Journal of Asian Earth Sciences,2018,156:90-95.DOI:10.1016/j.jseaes.2018.01.003.
    [6]古立峰,刘永,占玄,等.湖泊沉积物粒度分析方法在古气候环境研究中的应用[J].化工矿产地质,2012,34(3):1-6.Gu L F,Liu Y,Zhan X,et al.The application of grain size of lake sediments in reconstructing the paleoclimate and paleoenvironment[J].Geology of Chemical Minerals,2012,34(3):1-6.
    [7]陈敬安,万国江,张峰,等.不同时间尺度下的湖泊沉积物环境记录-以沉积物粒度为例[J].中国科学(D辑),2003,33(6):564-568.Chen J A,Wan G J,Zhang F,et al.Environmental records of lake sediments at different time scales-taking sediment particle size as an example[J].Science China(Series D),2003,33(6):564-568.
    [8]潘继征,熊飞,李文朝,等.抚仙湖浮游植物群落结构、分布及其影响因子[J].生态学报,2009,29(10):5 376-5 385.DOI:10.3321/j.issn:1000-0933.2009.10.024.Pan J Z,Xiong F,Li W C,et al.Phytoplankton community structure,distribution and influencing factors in Fuxian Lake[J].Acta Oecologica,2009,29(10):5 376-5 385.
    [9]陈敬安,万国江,唐德贵,等.洱海近代气候变化的沉积物与同位素记录[J].自然科学进展,2000,10(3):253-259.Chen J A,Wan G J,Tang D G,et al.Sediments and isotopic records of recent climate change in Erhai Lake[J].Progress in Natural Science,2000,10(3):253-259.
    [10]侯春梅,刘小伟,李明,等.甘肃黄土的粒度分维特征及意义[J].地质科学,2005,40(4):539-546.DOI:10.3321/j.issn:0563-5020.2005.04.009.Hou C M,Liu X W,Li M,et al.Grain-size fractal dimension of the loess in Gansu and its significance[J].Journal of Geological Science,2005,40(4):539-546.
    [11]毛龙江,刘晓燕,许叶华.南京江北地区下蜀黄土粒度分形与全新世环境演变[J].中国沙漠,2006,26(2):264-267.DOI:10.3321/j.issn:1000-694X.2006.02.019.Mao L J,Liu X Y,Xu Y H,et al.Grain-size fractal distribution of Xiashu loess and holocene environmental change in North of Yangtze River,Nanjing[J].Journal of Desert Research,2006,26(2):264-267.
    [12]Maggi F,Mietta F,Winterwerp J C.Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment[J].Journal of Hydrology,2007,343(1):43-55.
    [13]Ni H,Zheng W,Liu X,et al.Fractal-statistical analysis of grain-size distributions of debris-flow deposits and its geological implications[J].Landslides,2011,8(2):253-259.DOI:10.1007/s10346-010-0240-x.
    [14]肖海丰,刘少军,徐海凤.连环湖小尚泡沉积物粒度分形特征研究[J].哈尔滨师范大学自然地理学报,2014,30(4):108-110.Xiao H F,Liu S J,Xu H F.Fractal characteristics of grain-size in sediments from Xiaoshangpao Lake in Lianhuan Lake[J].Natural Sciences Journal of Harbin Normal University,2014,30(4):108-110.
    [15]陶云,陈艳,段长春,等.云南省1981-2013年降雪过程气候特征及环流型分析[J].云南大学学报:自然科学版,2018,40(6):1 171-1 180.Tao Y,Chen Y,Duan C C,et al.The climatic characteristics of snowfall processes and the circulation patterns of Yunnan from 1981 to 2013[J].Journal of Yunnan University:Natural Sciences Edition,2018,40(6):1 171-1 180.
    [16]王小雷,杨浩,赵其国,等.云南抚仙湖近现代环境变化的沉积物粒度记录[J].沉积学报,2010,28(4):776-782.Wang X L,Yang H,Zhao Q G,et al.Recent environmental change inferred from grain-size records in Fuxian Lake,Yunnan Province[J].Acta Sedimentologic Sinica,2010,28(4):776-782.
    [17]孔维琳,王余舟,向伶,等.抚仙湖流域植被景观格局分析[J].云南大学学报:自然科学版,2012,34(4):468-475.Kong W L,Wang Y Z,Xiang L,et al.An analysis on the landscape pattern of the vegetationin Fuxian Lake catchment in Yunnan[J].Journal of Yunnan University:Natural Sciences Edition,2012,34(4):468-475.
    [18]周瑞伍,彭明春,张一平.云南主要森林植被碳储量及固碳潜力模拟研究[J].云南大学学报:自然科学版,2017,39(6):181-195.Zhou R W,Peng M C,Zhang Y P.The simulation research of carbon storage and sequestration potential of main forest vegetation in Yunnan Province[J].Journal of Yunnan University:Natural Sciences Edition,2017,39(6):181-195.
    [19]燕婷,刘恩峰,张恩楼,等.抚仙湖沉积物重金属时空变化与人为污染评价[J].湖泊科学,2016,28(1):50-58.Yan T,Liu E F,Zhang E L,et al.The spatio-temporaIvariations of heavy metals in the sediment of Fuxian and the contamination assessment[J].Journal of Lake Sciences,2016,28(1):50-58.
    [20]Liu G,Liu Z,Li Y,et al.Effects of fish introduction and eutrophication on the cladoceran community in Fuxian Lake,a deep oligotrophic lake in Southwest China[J].Journal of Paleolimnology,2009,42(3):427-435.DOI:10.1007/s10933-008-9286-3.
    [21]Rakhshandehroo G R,Shaghaghian M R,Keshavarzi AR,et al.Temporal variation of velocity components in a turbulent open channel flow:Identification of fractal dimensions[J].Applied Mathematical Modelling,2009,33(10):3 815-3 824.DOI:10.1016/j.apm.2008.12.009.
    [22]Shepard F P.Nomenclature based on sand-silt clay ratios[J].Journal of Sedimentary Petrology,1954,24(3):151-158.
    [23]徐利强,徐芳,周涛发.巢湖沉积物粒度特征及其沉积学意义[J].地理科学,2015,35(10):1 318-1 324.Xu L Q,Xu F,Zhou T F.Grain-size features of lacustrine sediments from Chaohu Lake and its sedimentary implications[J].Scientia Geographica Sinica,2015,35(10):1 318-1 324.
    [24]柏春广,穆桂金,王建.艾比湖湖泊沉积物粒度的分维特征与环境意义[J].干旱区地理,2002,25(4):336-341.DOI:10.3321/j.issn:1000-6060.2002.04.009.Bai C G,Mu G J,Wang J.Grain-size fractal dimensions characteristics of lacustrine sediments of Aiby Lake and the environmental significance[J].Arid Land Geography,2002,25(4):336-341.
    [25]李华勇,张虎才,陈光杰,等.云南高原湖泊表层沉积物粒度特征及环境指示意义[J].沉积学报,2017,35(3):499-507.Li H Y,Zhang H C,Chen G J,et al.The grain size distribution characteristics of surface sediments from plateau lakes in Yunnan Province and their environmental significance[J].Acta Sedimentologic Sinica,2017,35(3):499-507.
    [26]傅开道,杨文辉,苏斌,等.流域环境变化的河流沉积物粒度响应-澜沧江案例[J].地理科学进展,2015,34(9):1 148-1 155.Fu K D,Yang W H,Su B,et al.Response of river sediments to catchment environmental changes:A case study of the Lancang River[J].Progress in Geography,2015,34(9):1 148-1 155.
    [27]何华春,丁海燕,张振克,等.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义[J].地理科学,2005,25(5):590-596.DOI:10.3969/j.issn.1000-0690.2005.05.013.He H C,Ding H Y,Zhang Z K,et al.Grain-size characteristics and their environmental significance of Hongze Lake sediments[J].Acta Geographica Sinica,2005,25(5):590-596.
    [28]陈冬梅,穆桂金.不同沉积环境下沉积物的粒度分形特征的对比研究[J].干旱区地理,2004,27(1):47-51.DOI:10.3321/j.issn:1000-6060.2004.01.009.Chen D M,Mu G J.Comparising study of grain-size fractal dimensions characteristics between several sediments with different forming environments[J].Arid Land Geography,2004,27(1):47-51.
    [29]易惟熙,沈承德,刘东生.洛川黄土微米级至纳米级物质颗粒度分布规律[J].地球化学,1995(4):327-333.DOI:10.3321/j.issn:0379-1726.1995.04.002.Yi W X,Shen C D,Liu D S,et al.Particle size distribution of micrometer nanometer loess material in Luochuan Section,China[J].Journal of Geochemistry,1995(4):327-333.
    [30]Zhang W,Ming Q,Shi Z,et al.Lake sediment records on climate change and human activities in the Xingyun Lake catchment,SW China[J].Plos One,2014,9(7):e102 167.DOI:10.1371/journal.pone.0102167.
    [31]王小雷,杨浩,丁兆运,等.云南抚仙湖近现代沉积速率变化研究[J].地理学报,2010,66(11):1 551-1 561.Wang X L,Yang H,Ding Z Y,et al.Modern sedimentation rates of Fuxian Lake by 210Pb and 137Cs dating[J].Acta Geographica Sinica,2010,66(11):1 551-1 561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700