用户名: 密码: 验证码:
整体刚性面板加筋土挡墙振动台模型试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shaking table tests on reinforced soil retaining walls with full-height rigid facing
  • 作者:徐鹏 ; 蒋关鲁 ; 邱俊杰 ; 高泽飞 ; 王智猛
  • 英文作者:XU Peng;JIANG Guan-lu;QIU Jun-jie;GAO Ze-fei;WANG Zhi-meng;School of Civil Engineering, Southwest Jiaotong University;Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University;China Railway Eryuan Engineering Group Co., Ltd.;
  • 关键词:加筋土挡墙 ; 地震 ; 拟静力法 ; 振动台模型试验 ; 加速度
  • 英文关键词:reinforced soil retaining wall;;earthquake;;pseudo-static method;;shaking table test;;acceleration
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:西南交通大学土木工程学院;西南交通大学高速铁路线路工程教育部重点试验室;中铁二院工程集团有限责任公司;
  • 出版日期:2019-03-10
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.300
  • 基金:中国铁路总公司科技研究开发计划项目(No.2014G003-C)~~
  • 语种:中文;
  • 页:YTLX201903019
  • 页数:7
  • CN:03
  • ISSN:42-1199/O3
  • 分类号:177-183
摘要
加筋土挡墙在大量地震中显示了优越的抗震性能。地震荷载作用下,加筋土挡墙的设计中通常采用拟静力法将动荷载等效为静力荷载。为了对比加筋土挡墙拟静力设计值与实际动力响应值的差异,开展了整体刚性面板加筋土挡墙振动台模型试验。通过位移、加速度、土压力、筋材拉力的测试,得到以下结论:加筋土挡墙内部的加速度分布不均匀并呈现面板、加筋体加速度大于填土加速度的趋势,同时测试的响应加速度值大于设计规范建议值;面板背面土压力作用点高于设计值,但合力仅为物部-冈部理论值的15%~20%;受加速度放大效应及动土压力作用点的影响,墙体的主要变形模式为转动变形;筋材拉力沿墙高非线性分布并且测试合力大于铁路规范建议值。
        Reinforced soil retaining walls showed excellent seismic performance in a large number of earthquakes. In the design of reinforced earth retaining wall under seismic loading, the dynamic load can be regarded as equivalent to the static load according to the quasi-static method. A shaking table test of reinforced soil retaining wall with full-height rigid(FHR) facing was carried out to compare the difference between the response obtained by pseudo-static method and the actual dynamic response. The facing displacement, response acceleration, dynamic earth pressure, and the reinforcement load were measured and analyzed. The following conclusions have been drawn: the distribution of the response acceleration in the reinforced soil retaining wall is non-uniform, and the accelerations in the facing and the reinforced zone are larger than those in the retained zone; the response accelerations measured are larger than those calculated from the current design guidelines; although the location of the dynamic earth pressure at the back of the facing is higher than the design value, the resultant force is only 15%-20% of that calculated by the Mononobe-Okabe method; as a result of the effects of acceleration amplification along the facing and the higher location of the dynamic earth pressure, the predominant deformation mode of the FHR facing is rotation; the distribution of the reinforcement tensile force along the wall facing is nonlinear, and the measured force is larger than that calculated from the code in China.
引文
[1]KUWANO J,MIYATA Y,KOSEKI J.Performance of reinforced soil walls during the 2011 Tohoku earthquake[J].Geosynthetics International,2014,21(3):179-196.
    [2]程亚男,孙树林,阮晓波,等.加筋土挡墙地震稳定性的拟动力分析[J].岩土力学,2013,34(12):3573-3579.CHENG Ya-nan,SUN Shu-lin,RUAN Xiao-bo,et al.Pseudo-dynamic analysis of seismic stability of reinforced soil walls[J].Rock and Soil Mechanics,2013,34(12):3573-3579.
    [3]BHATTACHARJEE A,MURALI K A.Development of numerical model of wrap-faced walls subjected to seismic excitation[J].Geosynthetics International,2012,19(5):354-369.
    [4]PANAH A K,YAZDI M,GHALANDARZADEH A.Shaking table tests on soil retaining walls reinforced by polymeric strips[J].Geotextiles and Geomembranes,2015,43(2):148-161.
    [5]EL-EMAM M M,BATHURST R J.Facing contribution to seismic response of reduced-scale reinforced soil walls[J].Geosynthetics International,2005,12(5):215-238.
    [6]中华人民共和国国家标准编写组.GB 50111―2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.The National Standards Compilation Group of People’s Republic of China.GB 50111―2006 Code for seismic design of railway engineering[S].Beijing:China Planning Press,2006.
    [7]AASHTO.AASHTO-LRFD Bridge design specification and commentary[M].Washington D C:American Association of State Highway and Transportation Officials,2014.
    [8]AASHTO.AASHTO-LRFD Bridge Design specification and commentary[M].Washington D C:American Association of State Highway and Transportation Officials,2005.
    [9]NCMA.Design manual for segmental retaining walls[S].5th ed.[S.l.]:National Concrete Masonry Association,2012.
    [10]REN F,ZHANG F,XU C,et al.Seismic evaluation of reinforced-soil segmental retaining walls[J].Geotextiles and Geomembranes,2016,44(4):604-614.
    [11]MURALI K A,BHATTACHARJEE A.Behavior of rigid-faced reinforced soil-retaining walls subjected to different earthquake ground motions[J].International Journal of Geomechanics,2016,17(1):1-14.
    [12]TATSUOKA F,TATEYAMA M,KOSEKI J,et al.Geosynthetic-reinforced soil structures for railways in Japan[J].Transportation Infrastructure Geotechnology,2014,1(1):3-53.
    [13]叶海林,郑颖人,李安洪,等.地震作用下边坡抗滑桩振动台试验研究[J].岩土工程学报,2012,34(2):251-257.YE Hai-lin,ZHENG Ying-ren,LI An-hong,et al.Shaking table tests on stabilizing piles of slopes under earthquakes[J].Chinese Journal of Geotechnical Engineering,2012,34(2):251-257.
    [14]SABERMAHANI M,GHALANDARZADEH A,FAKHER A.Experimental study on seismic deformation modes of reinforced-soil walls[J].Geotextiles and Geomembranes,2009,27(2):121-136
    [15]TATSUOKA F,HIRAKAWA D,NOJIRI M,et al.A new type of integral bridge comprising geosyntheticreinforced soil walls[J].Geosynthetics International,2009,16(4):301-326.
    [16]MATSUO O,YOKOYAMA K,SAITO Y.Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls[J].Geosynthetics International,1998,5(1-2):97-126.
    [17]NAKAJIMA S.Study on seismic performance of geogrid reinforced soil retaining walls and deformation characteristics of backfill soil[C]//Proceedings of 4th Asian Regional Conference on Geosynthetics.Shanghai:[s.n.],2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700