用户名: 密码: 验证码:
地下破碎矿体数值计算模型的构建及采场结构参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical model building for broken ore body and optimization of stope structural parameters
  • 作者:刘冬 ; 邵安林 ; 金长宇 ; 丁成功 ; 范富泉
  • 英文作者:LIU Dong;SHAO Anlin;JIN Changyu;DING Chenggong;FAN Fuquan;College of Engineering, Shantou University;School of Resources & Civil Engineering, Northeastern University;
  • 关键词:岩体力学 ; 破碎矿体 ; 进路跨度 ; 优化分析 ; 数值模拟
  • 英文关键词:rock mechanics;;broken orebody;;stope span;;optimization analysis;;numerical simulation
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:汕头大学工学院;东北大学资源与土木工程学院;
  • 出版日期:2019-02-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.294
  • 基金:中央高校基本科研业务专项资金资助项目(N170104025)~~
  • 语种:中文;
  • 页:ZNGD201902024
  • 页数:8
  • CN:02
  • ISSN:43-1426/N
  • 分类号:193-200
摘要
以焦家金矿-390 m中段为试验采场,对采场进路跨度进行优化研究。通过现场观测、节理扫描、声波测试确定矿体的地质情况与力学特性,建立适合模拟破碎矿体的数值计算模型;利用Hoek-Brown强度准则与反分析手段确定计算参数,结合FLAC3D数值模拟对6种不同跨度的进路进行分析计算。研究结果表明:当采场进路跨度从3.5 m增加至6.5 m时,顶板的位移、塑性区体积随跨度增大而呈线性增加;当采场跨度大于7.5 m后,采场顶板的位移、塑性区体积随跨度增大而急剧增大,围岩进入塑性阶段;当-390 m中段进路跨度为7.5 m时,可以满足矿岩体的自稳要求,证明本文分析方法是正确而且可行的。
        The-390 m middle segment of Jiaojia Gold Mine was used as the test stope to optimize the approach span of the stope. The geological conditions and mechanical properties of the ore rock were determined by in situ observations,joints scanning and acoustic wave tests. A numerical simulation model suitable for jointed rock mass was established. The calculation parameters were gained by Hoek-Brown strength criterion and back-analysis. Combined with FLAC3 D numerical simulation, six different approach spans were calculated and analyzed. The results show that the displacement of the roof and the volume of the plastic zone increase linearly with the increase of the span when the access span of the stope increases from 3.5 m to 6.5 m. When the stop span exceeds 7.5 m, the displacement and plastic zone volume of stop roof increase sharply with the increase of span, and the surrounding rock has entered the plastic stage. It is determined that the-390 m midcourse approach span is 7.5 m, which can meet the stability requirements of rock mass. The proposed analysis method is proved to be correct and feasible.
引文
[1]FENG Xiating,HUDSON J.The ways ahead for rock engineering design methodologies[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(2):255-273.
    [2]FENG Xiating,HUDSON J.Rock engineering design[M].London,UK:CRC Press/Balkema,2011:322-341.
    [3]BROWN E T.Block caving geomechanics[M].Queensland,Australia:Julius Kruttschnitt Mineral Centre,2003:12-22.
    [4]BARTON N,LIEN R,LUNDE J.Engineering classifications of rock masses for the design of tunnel support[J].Rock Mechanics,1974,6(6):189-236.
    [5]MATHEWS K,HOEK E,WYLLIE D,et al.Prediction of stable excavations for mining at depths below 1000 metres in hard rock[R].Ottawa,Canada:Nature Resources Canada,1980:18-46.
    [6]PAKALNIS R,BRADY T,HUGHES P,et al.Weak rock mass design for underground mining operation[C]//Proceedings of the53rd Annual Conference.Ottawa,Canada:Canadian Geotechnical Society,2000:2-24.
    [7]CHENG Yunming,WANG Jin'an,XIE Guangxiang,et al.Three-dimensional analysis of coal barrier pillars in tailgate area adjacent to the fully mechanized top caving mining face[J].International Journal of Rock Mechanics&Mining Sciences,2010,47(8):1372-1383.
    [8]JIANG Quan,FENG Xiating,XIANG Tianbing,et al.Rockburst characteristics and numerical simulation based on a new energy index:a case study of a tunnel at 2,500 m depth[J].Bulletin of Engineering Geology and the Environment,2010,69(3):381-388.
    [9]王猛,霍昱名,孙尚旭,等.似膏体充填开采沉陷的FLAC3D数值模拟[J].金属矿山,2016,45(5):163-167.WANG Meng,HUO Yuming,SUN Shangxu,et al.Numerical simulation on the subsidence of the paste-like filling mining based on FLAC3D[J].Metal Mine,2016,45(5):163-167.
    [10]吴启红,万世明,彭文祥.一种多层采空区群稳定性的综合评价法[J].中南大学学报(自然科学版),2012,43(6):2324-2330.WU Qihong,WAN Shiming,PENG Wenxiang.A comprehensive evaluation method about stability of polylaminate goafs[J].Journal of Central South University(Science and Technology),2012,43(6):2324-2330.
    [11]李术才,平洋,王者超,等.基于离散介质流固耦合理论的地下石油洞库水封性和稳定性评价[J].岩石力学与工程学报,2012,31(11):2162-2170.LI Shucai,PING Yang,WANG Zhechao,et al.Assessments of containment and stability of underground crude oil storage caverns based on fluid-solid coupling theory for discrete medium[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2162-2170.
    [12]朱永生,朱焕春,石安池,等.基于离散单元法的白鹤滩水电站复杂块体稳定性分析[J].岩石力学与工程学报,2011,30(10):2068-2075.ZHU Yongsheng,ZHU Huanchun,SHI Anchi,et al.Complicated block stability analysis of Baihetan hydropower station based on distinct element method[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2068-2075.
    [13]张天军,羽玥,张磊,等.矿山开采沉陷的FLAC3D数值模拟分析[J].煤炭技术,2018(2):11-14.ZHANG Tianjun,YU Yue,ZHANG Lei,et al.Numerical simulation analysis of mining subsidence of mine by FLAC3D[J].Coal Technology,2018(2):11-14.
    [14]江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的硬岩本构模型研究[J].岩石力学与工程学,2008,27(1):144-152.JIANG Quan,FENG Xiating,CHEN Guoqing.Study on constitutive model of hard rock considering surrounding rock deterioration under high geostresses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(1):144-152.
    [15]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[D].武汉:中国科学院武汉岩土力学研究所,2007:16-29.JIANG Quan.Study on model and stability of surrounding rock of large underground caverns under high geo-stress condition[D].Wuhan:Chinese Academy of Sciences.Institute of Rock and Soil Mechanics,2007:16-29.
    [16]胡盛明,胡修文.基于量化的GSI系统和Hoek-Brown准则的岩体力学参数的估计[J].岩土力学,2011,32(3):861-866.HU Shengming,HU Xiuwen.Estimation of rock mass parameters based on quantitative GSI system and Hoek-Brown criterion[J].Rock and Soil Mechanics,2011,32(3):861-866.
    [17]林锋,黄润秋,王胜,等.岩体体积节理数(Jv)的现场测量方法评价[J].工程地质学报,2008(5):663-666.LIN Feng,HUANG Runqiu,WANG Sheng,et al.Evaluation of in-situ measurement methods for counting volumetric joints of rock mass[J].Journal of Engineering Geology,2008(5):663-666.
    [18]JIN Changyu,YANG Chengxiang,FANG Dan,et al.Study on the failure mechanism of basalts with columnar joints in the unloading process on the basis of an experimental cavity[J].Rock Mechanics and Rock Engineering,2015,48(3):1275-1288.
    [19]蒋斌松,蔡美峰,贺永年,等.深部岩体非线性Kelvin蠕变变形的混沌行为[J].岩石力学与工程学报,2006,25(9):1862-1867.JIANG Binsong,CAI Meifeng,HE yongnian,et al.Chaotic behavior of nonlinear Kelvin creep of rock mass in deep ground[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(9):1862-1867.
    [20]伍国军,陈卫忠,曹俊杰,等.工程岩体非线性蠕变损伤力学模型及其应用[J].岩石力学与工程学报,2010,29(6):1184-1191.WU Guojun,CHEN Weizhong,CAO Junjie,et al.Nonlinear creep damage model of engineered rock and its application[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(6):1184-1191.
    [21]董金奎,冯夏庭,张希巍,等.地下采场破碎岩体稳定性评价与参数优化[J].东北大学学报(自然科学版),2013,34(9):1322-1326.DONG Jinkui,FENG Xiating,ZHANG Xiwei,et al.Stability evaluation and parameter optimization on the fractured rock mass in underground stope[J].Journal of Northeastern University(Natural Science),2013,34(9):1322-1326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700