用户名: 密码: 验证码:
深部开采砌体梁失稳扰动底板破坏力学行为及分区特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Floor failure mechanical behavior and partition characteristics under the disturbance of voussoir beam instability in deep coal mining
  • 作者:李春元 ; 张勇 ; 左建平 ; 唐世界 ; 刘世峰
  • 英文作者:LI Chunyuan;ZHANG Yong;ZUO Jianping;TANG Shijie;LIU Shifeng;School of Mechanics and Civil Engineering,China University of Mining and Technology(Beijing);Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources,China University of Mining and Technology(Beijing);Zhaogu(Xinxiang)Limited Company of Jiaozuo Coal Industrial Group,Henan Energy and Chemical Industry Group Co.,Ltd.;
  • 关键词:底板岩体 ; 破坏行为 ; 砌体梁失稳 ; 强扰动 ; 深部开采
  • 英文关键词:floor rock mass;;failure behavior;;voussoir beam instability;;strong disturbance;;deep coal mining
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)力学与建筑工程学院;中国矿业大学(北京)共伴生能源精准开采北京市重点实验室;河南能源化工集团焦煤煤业赵固(新乡)能源有限公司;
  • 出版日期:2019-05-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.296
  • 基金:国家重点研发计划资助项目(2016YFC0600708);; 国家自然科学基金资助项目(51622404);; 中央高校基本科研业务费专项资金资助项目(2011YZ05)
  • 语种:中文;
  • 页:MTXB201905023
  • 页数:13
  • CN:05
  • ISSN:11-2190/TD
  • 分类号:232-244
摘要
深部开采的强扰动附加属性导致底板煤岩破坏加剧,易沟通底板承压水导升带而诱发突水灾害,故研究砌体梁失稳扰动底板破坏的力学行为可为实现矿山岩层控制提供重要的理论基础。根据弹塑性力学理论分析了深部开采砌体梁失稳扰动底板破坏的动载源特征,基于压力拱及损伤力学理论研究了砌体梁失稳扰动底板压剪破坏和卸荷破坏的力学行为,应用离散元软件计算分析了不同采深下砌体梁失稳扰动底板的应力变化及变形破坏行为,结合采动力学全过程应力-应变曲线获得了深部开采底板强扰动破坏的分区特征,并应用深部开采微震监测数据进行了验证。结果表明:砌体梁失稳后,梁端煤壁端部及触矸区域底板应力增高并形成了塑性屈服区和触矸破坏区,两者之间则形成了压力拱形式的卸荷破坏区;随采深增加,底板塑性屈服区和触矸破坏区的压应力增量及卸荷破坏区的卸荷反弹力不断增大,并使得底板岩体最大变形量在采深700 m以浅时近似线性增加,而采深700 m以深的深部开采却表现为非线性突变增长;深部开采高围压造成底板压应力峰值及卸荷反弹力非线性增加,促使了扰动岩体由浅部脆性向深部延性的转变,并导致其强扰动破坏的分区范围扩大,变形破坏深度增加,深部开采底板的非线性强扰动破坏行为在底板浅部最突出。
        Floor failure becomes intensified under the additional property of strong disturbance in deep coal mining,which easily connects hydraulic fractured zone and induces confined aquifer water inrush disasters. Therefore,it can provide an important theoretical basis for realizing strata control in coal mines by the research on floor failure mechanical behavior under the disturbance of voussoir beam instability. According to the elastic-plastic mechanics theory,the dynamic load source characteristic of floor failure under the disturbance of voussoir beam instability in deep coal mining was analyzed. Mechanical behavior of compression-shear failure and unloading failure under the disturbance of voussoir beam instability were studied based on pressure arch theory and damage mechanics. The discrete numerical software was applied to calculate the floor stress change and deformation and failure behavior under the disturbance of voussoir beam instability in different mining depths. Combined with the complete stress-strain relationship of mininginduced mechanical test,strong disturbance failure partitions characteristics of floor in deep coal mining were obtained. Then it carried out verifications by using the mi-croseismic monitoring data of field measurement in deep coal mining. The results show that the stress increases at the coal rib and touching gangues area of the beam end after the main roof beam instability,and plastic yielding zone and touching gangues are formed at the floor,and unloading failure zone is shaped in the middle of them,which appears as the pressure arch shape. With mining depth increasing,the incremental compression stress of floor plastic yielding zone,touching gangues and unloading rebounding stress of unloading failure zone increase grad-ually,which cause the largest deformation of floor rock mass increase approximate linearly with the mining depth less than 700 m,but increase nonlinearly and change suddenly when the mining depth is more than 700 m. High confining pressure of deep coal mining leads to peak compression stress and unloading rebounding stress raises nonlinearly,which results in the failure of disturbance rock mass changing from the brittleness of shallow mining to the ductility of deep mining,then it brings about the expansion of partitions range of strong disturbance failure and the growth of deformation failure depth. The nonlinearly failure behavior of floor under the strong disturbance is most prominent in the shallow part in deep coal mining.
引文
[1]谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,2017,49(2):1-16.XIE Heping.Research framework and anticipated results of deep rock mechanics and mining theory[J].Advanced Engineering Sciences,2017,49(2):1-16.
    [2]谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178.XIE Heping,GAO Feng,JU Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178.
    [3]尹尚先.煤层底板突水模式及机理研究[J].西安科技大学学报,2009,29(6):661-665.YIN Shangxian.Modes and mechanism for water inrushes from coal seam floor[J].Journal of Xi’an University of Science and Technology,2009,29(6):661-665.
    [4]武强,周英杰,刘金韬,等.煤层底板断层滞后型突水时效机理的力学试验研究[J].煤炭学报,2003,28(6):561-565.WU Qiang,ZHOU Yingjie,LIU Jintao,et al.The mechanical experiment study on lag mechanism of water-bursting of fault under coal seam[J].Journal of China Coal Society,2003,28(6):561-565.
    [5]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997:15-75.
    [6]许延春,李见波.注浆加固工作面底板突水“孔隙-裂隙升降型”力学模型[J].中国矿业大学学报,2014,43(1):49-55.XU Yanchun,LI Jianbo.“Pore-fractured lifting type”mechanical model for floor water inrush of the grouting enforcement working face[J].Journal of China University of Mining&Technology,2014,43(1):49-55.
    [7]施龙青,徐东晶,邱梅,等.采场底板破坏深度计算公式的改进[J].煤炭学报,2013,38(S2):299-303.SHI Longqing,XU Dongjing,QIU Mei,et al.Improved on the formula about the depth of damaged floor in working area[J].Journal of China Coal Society,2013,38(S2):299-303.
    [8]白海波,戎虎仁,杨城,等.新集二矿下组煤底板石灰岩层隔水性及应用研究[J].采矿与安全工程学报,2015,32(3):363-368.BAI Haibo,RONG Huren,YANG Cheng,et al.The impermeability of limestone aquifuge in bottom coal seam floor and its application in Xinji Second Coal Mine[J].Journal of Mining&Safety Engineering,2015,32(3):363-368.
    [9]PANG Yihui,WANG Guofa,DING Ziwei.Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments[J].International Journal of Coal Science&Technology,2014,1(4):428-433.
    [10]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000:72-256.
    [11]煤矿安全监察总局.2010-2012年全国煤矿重特大事故案例汇编[M].[S.l.]:[s.n.],2013.
    [12]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010:65-99.
    [13]包世华.结构力学(下册)[M].武汉:武汉理工大学出版社,2008:248-255.
    [14]李春元.深部强扰动底板裂隙岩体破裂机制及模型研究[D].北京:中国矿业大学(北京),2018:1-120.LI Chunyuan.Fracture mechanism and its model of floor rock mass under strong disturbance in deep coal mining[D].Beijing:China University of Mining&Technology,2018:1-120.
    [15]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995:409-467.
    [16]张晓君.高应力硬岩卸荷岩爆模式及损伤演化分析[J].岩土力学,2012,33(12):3554-3560.ZHANG Xiaojun.Pattern and damage evolution of unloading rockburst for high-stress hard rock[J].Rock and Soil Mechanics,2012,33(12):3554-3560.
    [17]马文强,王同旭.多围压脆岩压缩破坏特征及裂纹扩展规律[J].岩石力学与工程学报,2018,37(4):898-908.MA Wenqiang,WANG Tongxu.Compression failure characteristics and crack propagation of brittle rock under various confining pressures[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(4):898-908.
    [18]李建林,王乐华,等.卸荷岩体力学原理与应用[M].北京:科学出版社,2016:58-456.
    [19]黄达,黄润秋.卸荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验[J].岩石力学与工程学报,2010,29(3):502-512.HUANG Da,HUANG Runqiu.Physical model test on deformation failure and crack propagation evolvement of fissured rocks under unloading[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(3):502-512.
    [20]邱士利,冯夏庭,张传庆,等.不同初始损伤和卸荷路径下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2012,31(8):1686-1697.QIU Shili,FENG Xiating,ZHANG Chuanqing,et al.Experimental research on mechanical properties of deep marble under different initial damage levels and unloading paths[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1686-1697.
    [21]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.HE Manchao.Conception system and evalution indexes for deep engineering[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2854-2858.
    [22]薛东杰,周宏伟,彭瑞东,等.基于应力降的非连续支承压力强扰动特征研究[J].岩石力学与工程学报,2018,37(5):1080-1095.XUE Dongjie,ZHOU Hongwei,PENG Ruidong,et al.Stress drop on strong disturbance of discontinuous abutment pressure[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1080-1095.
    [23]曾志龙,孔令海,姜福兴,等.基于微地震监测的大水量矿区厚煤层围岩破裂特征[J].矿业安全与环保,2012,39(2):12-14,18.ZENG Zhilong,KONG Linghai,JIANG Fuxing,et al.Surrounding rock fractured characteristics of thick coal seam in the mine of massive water based on microseismic monitoring[J].Mining Safety&Environmental Protection,2012,39(2):12-14,18.
    [24]黄达,谭清,黄润秋.高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J].岩石力学与工程学报,2012,31(12):2483-2493.HUANG Da,TAN Qing,HUANG Runqiu.Mechanism of strain energy conversion process for marble damage and fracture under high stress and papid unloading[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2483-2493.
    [25]高速,张黎明,王在泉,等.大理岩卸荷破坏变形及能量特征研究[J].岩石力学与工程学报,2014,33(S1):2808-2813.GAO Su,ZHANG Liming,WANG Zaiquan,et al.study of deformation and energy properties of marble unloading failure[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):2808-2813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700