用户名: 密码: 验证码:
微动接触中分形粗糙表面的温升分布研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature Rise Distribution of Fractal Rough Surface in Fretting Contact
  • 作者:李玲 ; 田海飞 ; 云强强 ; 麻诗韵 ; 李治强
  • 英文作者:LI Ling;TIAN Hai-fei;YUN Qiang-qiang;MA Shi-yun;LI Zhi-qiang;School of Mechanical and Electrical Engineering,Xi'an University of Architecture and Technology;
  • 关键词:柱面-平面接触模型 ; 微动接触 ; 分形理论 ; 粗糙度 ; 温升
  • 英文关键词:cylindrical-plane contact model;;fretting contact;;fractal theory;;roughness;;temperature rise
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:西安建筑科技大学机电工程学院;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金资助项目(51305327,51475352);; 陕西省自然科学基金资助项目(2018JM5066)~~
  • 语种:中文;
  • 页:BMJS201906030
  • 页数:7
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:252-258
摘要
目的研究不同分形参数下表面粗糙度对微动接触表面温升的影响。方法通过创建Python脚本,将MATLAB中利用Weierstrass-Mandelbrot函数构造的分形表面轮廓坐标导入ABAQUS中,使用样条曲线拟合轮廓坐标,构建包含粗糙表面的二维柱面-平面接触模型,研究表面粗糙度、法向载荷、切向载荷以及材料属性对接触表面温升的影响规律。结果微动接触状态下,温升在接触宽度方向上呈先增后减的趋势,且沿深度方向温升幅值逐渐减小。不同粗糙度的表面节点具有相似的温升分布历程,热影响区主要分布于接触区表层附近,并在此表层产生高的温度场。粗糙接触模型会出现局部温升峰值,同时剪切摩擦应力和接触压力分布具有离散性,与文献中已有结论一致。结论接触表面温升幅值随着粗糙度的增大而增大。当表面粗糙度和法向载荷一定时,随着切向载荷幅值的增大,上试件的相对滑移距离和摩擦热产生率增加,引起温升幅值增大。考虑材料属性时,发现温升幅值大小与材料导热性密切相关,材料导热性能越好,接触表面温升幅值越小。
        The work aims to study the effect of surface roughness on the temperature rise of the micro-motion contact surface under different fractal parameters. By creating a Python script, the fractal surface contour coordinates constructed by Weierstrass-Mandelbrot function in MATLAB were imported into ABAQUS, and the spline curves were used to fit the contour coordinates. A two-dimensional cylindrical-plane contact model with rough surface was constructed and the influence of roughness, normal load, tangential load and material properties on the temperature rise of the contact surface was studied. The temperature rise first increased and then decreased in the contact width direction and amplitude decreased gradually along the depth direction in the micro-motion contact state. The surface nodes with different roughness had similar temperature rise distribution history and thermal influence area was mainly distributed near the surface and generated a high temperature field of the contact area. The local temperature rise peak appeared in the rough contact model, and the shear friction stress and the contact pressure distribution were discrete, consistent with the conclusions in the literature. The temperature rise amplitude of contact surface increases with the increase of roughness. The relative slip distance and friction of the upper test piece increase with the increase of the tangential load amplitude when the surface roughness and normal load are constant, thus causing an increase in temperature rise amplitude. In terms of the material properties, the magnitude of the temperature rise is closely related to the thermal conductivity of the material. The better the thermal conductivity of the material is, the smaller the temperature rise amplitude of the contact surface is.
引文
[1]CZICOS H,DOWSON D.Tribology:A systems approach to the science and technology of friction,lubrication,and wear[M].Journal of engineering materials and technology,1978,11(4):259-260.
    [2]FOUVRY S,DUO P,PERRUCHAUT P.A quantitative approach of Ti-6Al-4V fretting damage:friction,wear and crack nucleation[J].Wear,2004,257(9-10):916-929.
    [3]JIN X,SUN W,SHIPYWAY P H.Derivation of a wear scar geometry-independent coefficient of friction from fretting loops exhibiting non-coulomb frictional behaviour[J].Tribology international,2016,102:561-568.
    [4]LEE H,MALL S.Some observations on frictional force during fretting fatigue[J].Tribology letters,2004,17(3):491-499.
    [5]WANG R H,JAIN V K,MALL S.A non-uniform friction distribution model for partial slip fretting contact[J].Wear,2007,262(5):607-616.
    [6]JIN X,SUN W,SHIPWAY P H.The role of geometry changes and oxide debris layers associated with wear on the local temperature field in fretting contacts[J].Tribology international,2016,102:392-406.
    [7]KALIN M.Influence of flash temperatures on the tribological behaviour in low-speed sliding:A review[J].Materials science&engineering A,2004,374(1):390-397.
    [8]KALIN M,VIZINTIN J.Comparison of different theoretical models for flash temperature calculation under fretting conditions[J].Tribology international,2001,34(12):831-839.
    [9]ASHBY M F,ABULAWI J,KONG H S.Temperature maps for frictional heating in dry sliding[J].Tribology transactions,1991,4:577-587.
    [10]GREENWOOD J A,ALLISTON-GREINER A F.Surface temperatures in a fretting contact[J].Wear,1992,155:269-275.
    [11]HELMI A M,CAMACHO F.Temperature field in the vicinity of a contact asperity during fretting[J].ASMEpublications ped,1993,67:51-61.
    [12]JIN X,SHIPWAY P H,SUN W.The role of frictional power dissipation(as a function of frequency)and test temperature on contact temperature and the subsequent wear behaviour in a stainless steel contact in fretting[J].Wear,2015,330-331:103-111.
    [13]WEN J,KHONSARI M M.Transient temperature involving oscillatory heat source with application in fretting contact[J].Journal of tribology,2007,129:517-527.
    [14]LU W,ZHANG P,LIU X,et al.Influence of surface topography on torsional fretting wear under flat-on-flat contact[J].Tribology international,2017,109:367-372.
    [15]KUBIAK K J,LISKIEWICZ T W,MATHIA T G.Surface morphology in engineering applications:Influence of roughness on sliding and wear in dry fretting[J].Tribology international,2011,44(11):1427-1432.
    [16]KUBIAK K J,MATHIA T G,FOUVRY S.Interface roughness effect on friction map under fretting contact conditions[J].Tribology international,2010,43(8):1500-1507.
    [17]SVAHAN F,?SA K R,ERIK W.The influence of surface roughness on friction and wear of machine element coatings[J].Wear,2003,254(11):1092-1098.
    [18]SEDLACEK M,PODGORINK B,VIZINTIN J.Influence of surface preparation on roughness parameters friction and wear[J].Wear,2009,266:482-487.
    [19]PEREIRA K,YUE T,WAHAB M A.Multiscale analysis of the effect of roughness on fretting wear[J].Tribology international,2017,110:222-231.
    [20]LIU L,YANG C,SHENG Y.Wear model based on real-time surface roughness and its effect on lubrication regimes[J].Tribology international,2018,126:16-20.
    [21]尤晋闽,陈天宁.结合面法向动态参数的分形模型[J].西安交通大学学报,2009,43(9):91-94.YOU Jin-min,CHEN Tian-ning.Fractal model for normal dynamic parameters of joint surfaces[J].Journal of Xi'an Jiaotong University,2009,43(9):91-94.
    [22]姬翠翠,朱华.粗糙表面分形接触模型的研究进展[J].润滑与密封,2011,36(9):114-119.JI Cui-cui,ZHU Hua.Research progress on M-B fractal contact model[J].Lubrication and sealing,2011,36(9):114-119.
    [23]WANG S,KOMVOPOULOS K.A fractal theory of the interfacial temperature distribution in the slow sliding regime:Part 1-Elastic contact and heat transfer analysis[J].ASME journal of tribology,1994,116:812-822.
    [24]QIN W,JIN X,KIRK A,et al.Effects of surface roughness on local friction and temperature distributions in a steel-on-steel fretting contact[J].Tribology international2018,120:350-357.
    [25]MCCOLL I R,DING J,LEEN S B.Finite element simulation and experimental validation of fretting wear[J].Wear,2004,256(11):1114-1127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700