用户名: 密码: 验证码:
超声电喷推进机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on emission mechanism of ultrasonically electric propulsion
  • 作者:张姚滨 ; 杭观荣 ; 董磊 ; 康小明 ; 赵万生 ; 张岩 ; 康小录
  • 英文作者:ZHANG Yaobin;HANG Guanrong;DONG Lei;KANG Xiaoming;ZHAO Wansheng;ZHANG Yan;KANG Xiaolu;School of Mechanical Engineering,Shanghai Jiao Tong University;Shanghai Institute of Space Propulsion;
  • 关键词:超声电喷推 ; 发射模型 ; 微细驻波 ; 带电液滴 ; 发射机理
  • 英文关键词:ultrasonically electric propulsion(UEP);;emission model;;capillary standing waves;;charged droplets;;emission mechanism
  • 中文刊名:ZGKJ
  • 英文刊名:Chinese Space Science and Technology
  • 机构:上海交通大学机械与动力工程学院;上海空间推进研究所;
  • 出版日期:2016-02-24 13:24
  • 出版单位:中国空间科学技术
  • 年:2016
  • 期:v.36;No.212
  • 语种:中文;
  • 页:ZGKJ201601003
  • 页数:9
  • CN:01
  • ISSN:11-1859/V
  • 分类号:13-21
摘要
超声电喷推进是一种新型的电推进技术,主要用于解决胶体推力器等电推力器发射点集成困难、发射点数密度低的问题。通过将超声振动产生的大量微细驻波作为发射源,超声电喷推进将从根本上提高发射点的数目和密度,形成较大的推力密度。文章对超声电喷推进的发射机理进行了研究,得到相应的理论发射模型。通过对发射表面上微细驻波的形成过程、带电液滴的分离过程进行理论分析,建立了静电场条件下微细驻波波峰临界状态的平衡方程,推导出微细驻波波峰局部半径以及发射液滴尺寸的理论解,并提出了发射电流、比冲和推力的估算方程。在此基础上,分析了极间电场强度、超声振动频率、超声振动功率、推进剂性能黏度、推进剂表面张力系数和电导率对超声电喷推进性能的影响规律,并进行了试验验证。
        To improve the thrust of colloid thrusters by increasing the number of emitters,a novel electric propulsion method named ultrasonically electric propulsion(UEP) was proposed.The dense capillary standing waves produced by ultrasonic vibration are the emitters,so the number and density of emitters are improved fundamentally and relatively high thrust density appears.The emission mechanism of UEP was analyzed and the corresponding emission model was developed.Through theoretical analysis on the formation of capillary standing waves and the emission of the charged droplets,the relationship among the surface tension,inertial force and electrostatic force at the crests of standing waves was introduced.Furthermore,the radius of the standing wave crests and the diameter of the charged droplets were theoretically solved.The estimation equations of spray current,specific impulse and thrust were proposed.Based on the theoretical analysis,the influences of the electric filed strength,ultrasonic vibration frequency,ultrasonic vibration power and propellant on the performance of UEP were analyzed and experimentally verified.
引文
[1]冯永辉,毛根旺,陈茂林,等.微型电推力器的研究与发展[J].科学技术与工程,2012,20(16):3924-3932.FENG Y H,MAO G W.CHEN M L,et al.Research and development of micro electric thruster[J].Science Technology and Engineering.2012,20(16):3924-3932(in Chinese).
    [2]WOLF E T.Porous emitter colloid thruster performance characterization using optical techniques,ADA582612[R].2013.
    [3]GAMERO-CASTA O M,HRUBY V.Electrospray as asource of nanoparticles for efficient colloid thrusters[J].Journal of Propulsion and Power,2001,17(5):977-987.
    [4]GAMERO-CASTA O M.Characterization of a six-emitter colloid thruster using a torsional balance[J].Journal of Propulsion and Power,2004,20(2):736-741.
    [5]SONG W,SHUMLAK U.Ultrasonically aided electrospray source for charged particle approaching monodisperse distributions[J].Journal of Propulsion and Power,2010,26(2):353-363.
    [6]SONG W,SHUMLAK U.Charged nanoparticle source for high thrust level colloid thruster[J].Journal of Propulsion and Power,2008,24(1):146-148.
    [7]DONG L,SONG W,RANG X M,et al.A performance comparison of ultrasonically aided electric propulsion extractor configurations[J].Acta Astronautica,2012,77:1-11.
    [8]RANG X,DONG L,ZHAO W.Performance of propellant for ultrasonically aided electric propulsion[J].Acta Astronautica.2014,98:1-8.
    [9]ROZENBERG L.Physical principles of ultrasonic technology[M].New York:Springer Science&Business Media,2013.
    [10]FRIEND J,YEO L Y.Microscale acoustofluidics:microfluidics driven via acoustics and ultrasonics[J].Reviews of Modern Physics,2011,83(2):647-687.
    [11]YULE A J,AL-SULEIMANI Y.On droplet formation from capillary waves on a vibrating surface[C]//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.The Royal Society,2000,456(1997):1069-1085.
    [12]王欣,邓亮,刘勇,等.泰勒锥的形成及应用[J].计算机与应用化学,2011,28(11):1387-1392.WANG X,DENG L,LIU Y,et al.Research on formation and application of Taylor cone[J].Computers and Applied Chemistry,2011,28(11):1387-1392(in Chinese).
    [13]GANAN-CALVO A M,REBOLLO-MUNOZ N,MONTANERO J M.The minimum or natural rate of flow and droplet size ejected by Taylor cone-jets:physical symmetries and scaling laws[J].New Journal of Physics,2013,15(3):033035.
    [14]ASLANOV&Theory of breakup of a liquid jet into droplets[J].Technical Physics,1999,4(11):1386-1387.
    [15]LIN S P.Drop and spray formation from a liquid jet[J].Annual Review of Fluid Mechanics,1998,30:85-105.
    [16]DEEGAN R D,BRUNET P,EGGERS J.RayleighPlateau instability causes the crown splash[J].Fluid Dynamics,2008,arXiv:0806.3050.
    [17]GRIMM R L,BEAUCHAMP J L.Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization[J].The Journal of Physical Chemistry A,2009,114(3):1411-1419.
    [18]葛自良,毛骏健,陆汝杰.液体静电雾化现象及其应用[J].自然杂志,2000,22(1):37-41.GE Z L,MAO J J,LU R J.Liquid atomizing phenomenon subjected to the DC high voltage and its application[J].Chinese Journal of Nature.2000,22(1):37-41(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700