用户名: 密码: 验证码:
高气液比倾斜管临界携液流速研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on critical removing fluid flow rate of high gas-liquid ratio incline pipe
  • 作者:江鸣 ; 吕宇玲 ; 郝常利 ; 刘建武
  • 英文作者:JIANG Ming;LYU Yu-ling;HAO Chang-li;LIU Jian-wu;College of Pipeline and Civil Engineering,China University of Petroleum(East China);
  • 关键词:积液 ; 携液模型 ; 倾斜管实验 ; 临界携液流速
  • 英文关键词:effusion;;carry liquid model;;incline pipe experiment;;critical remove liquid rate
  • 中文刊名:IMIY
  • 英文刊名:Chemical Engineering(China)
  • 机构:中国石油大学(华东)储运与建筑工程学院;
  • 出版日期:2018-06-15
  • 出版单位:化学工程
  • 年:2018
  • 期:v.46;No.352
  • 基金:山东省油气储运安全省级重点实验室;; 青岛市环海油气储运技术重点实验室的资助
  • 语种:中文;
  • 页:IMIY201806011
  • 页数:5
  • CN:06
  • ISSN:61-1136/TQ
  • 分类号:60-63+74
摘要
天然气在管道输送过程中,随着温度和压力的降低会产生凝析液,凝析液聚集在管道的低洼处形成积液,不仅堵塞管道影响输气效率,而且腐蚀管线。生产中,通常采用提高气速的方法排出管道积液,能够使得管道积液从低洼处被携出的最小气速为该管道的临界气速。文中根据倾斜管内液相的基本动量方程,进行适当假设,建立倾斜管临界携液模型,并设计地势起伏的管路与实验管架,进行不同工况的实验,以确定管道的临界携液气速。另外还挑选出合适的气液界面摩擦系数,代入临界气速方程进行求解。结果对实验值与模型计算值进行对比,吻合度较好,其中Linehan的气液界面系数更适用于黏度较小流体模型的计算,Wongwises的气液界面系数则更适用于黏度偏大的流体。
        Nature gas will produce condensate with the decrease of temperature and pressure during pipeline transportation. Condensate will accumulate to form effusions in low-lying areas of the pipes,which will not only block pipelines,affecting gas transmission efficiency,but also corrode pipes. In actual production,gas velocity tends to be improved so as to remove effusions. And the minimum gas velocity,which will allow effusions removing from low-lying areas of the pipes,is the critical gas velocity. According to the basic momentum equations of the liquid phase in the inclined tube,some appropriate assumptions are made and a critical liquid-carrying model is established in the paper. Then undulating pipes and the testing pipe rack are designed to do experiments under different conditions in order to determine the critical liquid-carrying gas velocity of the pipeline. Besides,the appropriate friction coefficient of the gas-liquid interface was selected and substituted into the critical gas velocity equation to solve equations. The result shows that the experimental results are well consistent with the model calculation values. In addition,Linehan's gas-liquid interface coefficient is more suitable for the calculation of low viscosity fluid model while Wongwises gas-liquid interface coefficient is more suitable for fluid with large viscosity.
引文
[1]贾彦伯.油田低产气井涡流排水采气技术研究[D].沈阳:沈阳航空航天大学,2016.
    [2]王广志,翟培军.天然气-凝析液管道研究进展[J].中国石油和化工标准与质量,2013(9):254-254.
    [3]何云,杨益荣,刘争芬.大牛地气田水平井携液规律及排液对策研究[J].天然气勘探与开发,2013,36(3):38-41.
    [4]赵哲军,刘通,许剑,等.气井稳定携液之我见[J].天然气工业,2015,35(6):59-63.
    [5]王琦,李颖川,王志彬,等.水平气井连续携液实验研究及模型评价[J].西南石油大学学报,2014,36(3):139-145.
    [6]KOKAL S,STANISLAV J F.An analysis of two-phase flow in inclined pipes with zero net liquid production[J].Journal of Canadian Petroleum Technology,1986,25(6).
    [7]AMARAVADI S,MINAMI K,SHOHAM O.Two-phase zero-net liquid flow in upward inclined pipes:experiment and modeling[J].SPE Journal,1998,3(3):253-260.
    [8]BIRVALSKI M,KOREN G B,HENKES R.Experiments and modelling of liquid accumulation in the low elbow of a gas/liquid pipeline[C]//9th North American Conference on Multiphase Technology.BHR Group,2014.
    [9]GREGORY G A,AZIZ K,NICHOLSON M K.Gas-liquid flow in upwards inclined pipe with zero net liquid production[C]//PSIG Annual Meeting.Pipeline Simulation Interest Group,1981.
    [10]BHAGWAT S M,GHAJAR A J.Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined pipes[J].Experimental Thermal and Fluid Science,2016,79:301-318.
    [11]TAITEL Y,SIMKHIS M,TEVELEV A,et al.Transient gas liquid flow in hilly terrain pipelines[J].International Journal of Multiphase Flow,2016,86:21-27.
    [12]NOSSEIR M A,DARWICH T A,SAYYOUH M H,et al.A new approach for accurate prediction of loading in gas wells under different flowing conditions[C]//SPE Production Operations Symposium.Society of Petroleum Engineers,1997.
    [13]杨文明,王明,陈亮,等.定向气井连续携液临界产量预测模型[J].天然气工业,2009,29(5):82-84.
    [14]陈德春,姚亚,韩昊,等.定向气井临界携液流量预测新模型[J].天然气工业,2016,36(6):40-44.
    [15]赵振.湿天然气管道低含液率气液两相流压降特性研究[D].西安:西安石油大学,2015.
    [16]郑平,赵梁,刘永铭.预测气液两相分层流界面剪切应力的新方法[J].西南石油大学学报:自然科学版,2015,37(6):119-126.
    [17]ALIYU A M,BABA Y D,LAO L,et al.Interfacial friction in upward annular gas-liquid two-phase flow in pipes[J].Experimental Thermal and Fluid Science,2017,84:90-109.
    [18]XIAO J J,SHOHAM O.Evaluation of interfacial friction factor prediction methods for gas/liquid stratified flow[C]//SPE Annual Technical Conference and Exhibition.Society of Petroleum Engineers,1991.
    [19]LINEHAN J H.Interaction of two-dimensional,stratified,turbulent air-water and steam-water flows[R].Argonne National Lab,Ill,1968.
    [20]WALLIS G B.One-dimensional two-phase flow[M].New York:Mc Graw-Hill,1969:431.
    [21]WONGWISES S,KONGKIATWANITCH W.Interfacial friction factor in vertical upward gas-liquid annular twophase follow[J].International Communications in Heat and Mass Transfer,2001,28(3):323-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700