用户名: 密码: 验证码:
面接触下水合羟乙基纤维素的润滑特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water-based Lubricating Properties of Aqueous Hydroxyethyl Cellulose in Surface Contact
  • 作者:盛德尊 ; 张会臣
  • 英文作者:SHENG Dezun;ZHANG Huichen;Transportation Equipments and Ocean Engineering College, Dalian Maritime University;
  • 关键词:水基润滑 ; 极低摩擦因数 ; 面接触 ; 羟乙基纤维素 ; 分子动力学模拟
  • 英文关键词:water-based lubrication;;super-low friction;;surface contact;;hydroxyethyl cellulose;;molecular dynamics
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:大连海事大学交通运输装备与海洋工程学院;
  • 出版日期:2019-01-05
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金资助项目(51335005)
  • 语种:中文;
  • 页:JXXB201901013
  • 页数:9
  • CN:01
  • ISSN:11-2187/TH
  • 分类号:132-140
摘要
以羟乙基纤维素(HEC)作为水基润滑添加剂,研究面接触条件下HEC润滑液的润滑特性。采用红外光谱仪分析HEC化学组成,结合分子动力学模拟分析HEC与水分子的相互作用,采用白光干涉三维表面形貌仪测量试样的表面形貌,借助微摩擦磨损试验机(UMT-2)探究转速、载荷、质量分数对润滑液润滑特性的影响。结果表明:HEC可以与水分子形成中、高强度的氢键;转速变化在摩擦副入口处对润滑液的成膜过程产生影响,进入摩擦副的润滑膜可以保持稳定的润滑状态,摩擦因数随转速增大几乎不变;增大载荷,润滑液在摩擦副间分布更加均匀,提升润滑性能,摩擦因数随载荷增大而减小;随润滑液质量分数增大,摩擦因数先减小后增大,质量分数为1.00%时摩擦因数最小。提出羟乙基纤维素水基润滑模型,模型包括水分子层和水合羟乙基纤维素层,其中水合羟乙基纤维素层起主要作用。
        HEC solutions of varying concentration are used as water-based lubricant.FT-IR Spectrum and Molecular Dynamics were used to study the interaction between HEC and water.3D optical surface profiler is used to measure the surface of friction pairs.The friction tests for effect of speed,load and concentration on lubricating behavior of HEC in surface contact are carried out on a modified friction tribometer(UMT-2).The results indicate that strong hydrogen bond occurs between HEC and water;the lubrication action isn’t enhanced by changing the rotation speed;the lubricant spread evenly under heavier load,which made the coefficient of friction(COF)decrease with the increasing load;the COF of the 1.00 wt.%solution was the lowest under different loads,while the COF increased in other solutions.The water-based lubricating film contains water layer and hydration layer of hydroxyethyl cellulose,in which the latter is dominant.
引文
[1]ERDEMIR A,LUO Jianbin.Guest editorial:Special issue on superlubricity[J].Friction,2014,2(2):93-94.
    [2]MA Liran,GAISINSKAYA-KIPNIS A,KAMPF N,et al.Origins of hydration lubrication[J].Nature Communications,2015,6,6060.
    [3]KLEIN J.Hydration lubrication[J].Friction,2013,1(1):1-23.
    [4]RAVIV U,LAURAT P,KLEIN J.Fluidity of water confined to subnanometre films[J].Nature,2001,413(6851):51-54.
    [5]DONOSE B C,VAKARELSKI I U,HIGASHITANI K.Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions[J].Langmuir,2005,21(5):1834-1839.
    [6]HEIMBERG J A,WAHL K J,SINGER I L,et al.Superlow friction behavior of diamond-like carbon coatings:Time and speed effects[J].Applied Physics Letters,2001,78(17):2449-2451.
    [7]LIU Yilun,GREY F,ZHENG Quanshui.The high-speed sliding friction of graphene and novel routes to persistent superlubricity[J].Scientific Reports,2014,4,4875.
    [8]ZHANG Rufan,NING Zhiyuan,ZHANG Yingying,et al.Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions[J].Nature Nanotechnology,2013,8(12):912-916.
    [9]LI Jinjin,ZHANG Chenhui,LUO Jianbin.Superlubricity behavior with phosphoric acid-water network induced by rubbing[J].Langmuir,2011,27(15):9413-9417.
    [10]LI Jinjin,ZHANG Chenhui,MA Liran,et al.Superlubricity achieved with mixtures of acids and glycerol[J].Langmuir,2013,29(1):271-275.
    [11]GOLDBERG R,SCHROEDER A,SILBERT G,et al.Boundary lubricants with exceptionally low friction coefficients based on 2d close-packed phosphatidylcholine liposomes[J].Advanced Materials,2011,23(31):3517-3521.
    [12]CHEN Meng,BRISCOE W H,ARMES S P,et al.Polyzwitterionic brushes:Extreme lubrication by design[J].European Polymer Journal,2011,47(4):511-523.
    [13]GOURDON D,LIN Qi,OROUDJEV E,et al.Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide[J].Langmuir,2008,24(4):1534-1540.
    [14]LI Jinjin,LIU Yuhong,LUO Jianbin,et al.Excellent lubricating behavior of brasenia schreberi mucilage[J].Langmuir,2012,28(20):7797-7802.
    [15]ARAD S M,RAPOPORT L,MOSHKOVICH A,et al.Superior biolubricant from a species of red micro-alga[J].Langmuir,2006,22(17):7313-7317.
    [16]BONGAERTS J H H,COOPER-WHITE J J,STOKES JR.Low biofouling chitosan-hyaluronic acid multi-layers with ultra-low friction coefficient[J].Biomacromolecules,2009,10(5):1287-1294..
    [17]RAVIV U,TADMOR R,KLEIN J.Shear and frictional interactions between adsorbed polymer layers in a good solvent[J].The Journal of Physical Chemistry B,2001,105(34):8125-8134.
    [18]KLEIN J.Modes of energy loss on shearing of thin confined films[J].Tribology Letters,2007,26(3):229-233.
    [19]LI Jinjin,ZHANG Chenhui,LUO Jianbin.Superlubricity achieved with mixtures of polyhydroxy alcohols and acids[J].Langmuir,2013,29(17):5239-5245.
    [20]LI Jinjin,ZHANG Chenhui,DENG Mingming,et al.Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication[J].Friction,2014,2(2):164-172.
    [21]WATANABE Y,MEENTS M J,MCDONNELL L M,et al.Visualization of cellulose synthases in Ara-bidopsis secondary cell walls[J].Science,2015,350(6257):198-203.
    [22]KLEIN J.CHEMISTRY:Repair or replacement a joint perspective[J].Science,2009,323(5910):47-48.
    [23]DURAND-CAVAGNA G,DELORT P,DUPRAT P,et al.Corneal toxicity studies in rabbits and dogs with hydroxyethyl cellulose and benzalkonium chloride[J].Toxicological Sciences,1989,13(3):500-508.
    [24]SMYTH H F,CARPENTER C P,WEIL C S.The chronic toxicity of hydroxyethyl cellulose for rats[J].Journal of the American Pharmaceutical Association(Scientific ed.),1947,36(11):335-336.
    [25]LI Jinjin,ZHANG Chenhui,SUN Liang,et al.Analysis of measurement inaccuracy in superlubricity tests[J].Tribology Transactions,2013,56(1):141-147.
    [26]GILLI G,GILLI P.The nature of the hydrogen bond:Outline of a comprehensive hydrogen bond theory[M].Oxford:Oxford University Press,2009.
    [27]IKEDA T,BOERO M,TERAKURA K.Hydration of alkali ions from first principles molecular dynamics revisited[J].The Journal of Chemical Physics,2007,126(3),034501-9.
    [28]MAHLER J,PERSSON I.A study of the hydration of the alkali metal ions in aqueous solution[J].Inorganic Chemistry,2012,51(1):425-438.
    [29]OSTROVERKHOV V,WAYCHUNAS G A,SHEN Y R.New information on water interfacial structure revealed by phase-sensitive surface spectroscopy[J].Physical Review Letters,2005,94(4):046102.
    [30]ONG S,ZHAO X,EISENTHAL K B.Polarization of water molecules at a charged interface:Second harmonic studies of the silica/water interface[J].Chemical Physics Letters,1992,191(3-4),327-335.
    [31]PFEIFFER-LAPLAUD M,COSTA D,TIELENS F,et al.Bimodal acidity at the amorphous silica/water interface[J].The Journal of Physical Chemistry C,2015,119(49):27354-27362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700