用户名: 密码: 验证码:
基于ANSYS/LS-DYNA的壁面摩擦因数影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Wall Friction Coefficient Based on ANSYS/LS-DYNA
  • 作者:何宁 ; 覃彬
  • 英文作者:HE Ning;QIN Bin;North China Institute of Science & Technology;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;
  • 关键词:摩擦因数 ; 冲击波 ; 数值模拟
  • 英文关键词:friction effect;;shock wave;;numerical simulation
  • 中文刊名:CUXI
  • 英文刊名:Journal of Ordnance Equipment Engineering
  • 机构:华北科技学院;北京理工大学爆炸科学与技术国家重点实验室;
  • 出版日期:2019-05-25
  • 出版单位:兵器装备工程学报
  • 年:2019
  • 期:v.40;No.250
  • 基金:河北省自然科学基金项目(E2018508089);; 中央高校基础科学研究专项经费(AQ1202A)
  • 语种:中文;
  • 页:CUXI201905049
  • 页数:4
  • CN:05
  • ISSN:50-1213/TJ
  • 分类号:239-242
摘要
针对实验测量壁面摩擦因数的局限性,采用ANSYS/LS-DYNA数值模拟技术,进行了壁面摩擦效应对空气冲击波传播的影响分析,提出了摩擦因数与巷道内冲击波衰减幅度、衰减比例的相互关系;模拟结果表明:超压衰减幅度并不是随摩擦因数增大而无限增大,超压衰减幅度的增量随摩擦因数增大而逐渐减小,随衰减比例的最小值约为0. 75。
        In view of the limitation of the experimental measurement of wall friction coefficient,ANSYS/LS-DYNA numerical simulation technology was used to analyze the influence of wall friction on the propagation of air shock wave,and the relationship between the friction coefficient and the attenuation amplitude and proportion of shock wave in roadway was proposed. The simulation results showed that the attenuation amplitude of overpressure did not increase infinitely with the increase of friction coefficient.The increment of the attenuation amplitude of overpressure decreased gradually with the increase of friction coefficient,and the minimum value of the attenuation ratio was about 0. 75.
引文
[1] GAMA B A,BOGETTI T A,FINK B K. Aluminum foam integral armor:A new dimension in armor design. Composite Structures,2001,52(10):381-395.
    [2] CLARK J B,GARRETT R K,JR,JUNGLING T L,et al. Influence of Initial Ingot Breakdown on the Microstructural and Textural Development of High-Purity Tantalum[J].Metallurgical Transactions A,1991(22A):2959.
    [3] POPUT N R,CATLIN C A,ARNTZEN B J. Investigation to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials,1996,45(1):1-25.
    [4] CHANG K S,KIM J K. Numerical investigation of inviscid shock wave dynamics in an expansion tube[J]. Shock Waves,1995,5(1):33-45.
    [5] MUKAI T,KANAHASHI H,MIYOSHI T,et al. Experimental study of energy absorption in a closed-celled aluminium foam under dynamic loading[J]. Scripta Materialia,1999,40(8):921-927.
    [6]王卫华.节理动态闭合变形性质及应力波在节理处的传播[D].长沙:中南大学,2006.
    [7]邹江,彭晓峰,颜维谋.壁面粗糙度对通道流动特性的影响[J].化工学报,2008,59(1):25-31.
    [8]翟成,林柏泉,菅从光,等.壁面粗糙度对瓦斯爆炸火焰波传播的影响[J].中国矿业大学学报,2006,35(1):39-43.
    [9]曲志明,孙强,黎锦贤.掘进巷道瓦斯爆炸冲击波与巷道壁面作用研究[J].煤矿安全,2005,36(9):1-2.
    [10]徐胜利,糜仲春,汤明钧.圆柱形空腔内气云爆炸波对壁面的作用[J].气动实验与测量控制,1996(2):17-23.
    [11]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8. 1进行显示动力分析[M].北京:清华大学出版社,2005.
    [12]邓凡平. ANSYS 10. 0有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [13]时党勇,李裕春,赵远. ANSYS/LS-DYNA 10. 0理论基础与工程实践[M].北京:中国水利水电出版社,2006.
    [14]李紫君,李东.具有脉冲种间偏利关系的Lotka-Volterra系统的动力学行为分析[J].重庆工商大学学报(自然科学版),2017,34(2):53-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700