用户名: 密码: 验证码:
基于中国电网结构及一线典型城市车辆出行特征的PHEV二氧化碳排放分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of PHEV CO_2 Emission Based on China's Grid Structure and Travelling Patterns in Mega Cities
  • 作者:郝旭 ; 王贺武 ; 李伟峰 ; 欧阳明高
  • 英文作者:HAO Xu;WANG He-wu;LI Wei-feng;OUYANG Ming-gao;State Key Laboratory of Automotive Safety and Energy,Tsinghua University;China Automotive Energy Research Center,Tsinghua University;Collaborative Innovation Center for Electric Vehicles;
  • 关键词:插电式混合动力乘用车(PHEV) ; 碳排放 ; 出行特征 ; 纯电里程比例 ; 电网结构
  • 英文关键词:plug-in hybrid electric vehicle(PHEV);;carbon dioxide emissions;;travel pattern;;electric distance ratio;;grid structure
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:清华大学汽车安全与节能国家重点实验室;清华大学中国车用能源研究中心;北京电动车辆协同创新中心;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家国际科技合作专项(2016YFE0102200);; 国家重点研发计划项目(2018YFB0106404)
  • 语种:中文;
  • 页:HJKZ201904021
  • 页数:10
  • CN:04
  • ISSN:11-1895/X
  • 分类号:187-196
摘要
中国电网火电比例的空间差异与插电式混合动力汽车(PHEV)驱动能源的二元性增加了研究PHEV二氧化碳排放的复杂性.使用上海市50辆PHEV汽车13万km的数据,研究了基于PHEV实际运行数据的二氧化碳排放评估方法,分析了PHEV纯电驱动里程比例及其影响因素,获得了纯电续驶里程、充电频率、电网构成对PHEV二氧化碳排放强度的影响,展望了2020年PHEV技术水平的二氧化碳减排效果.结果表明,我国一线城市PHEV乘用车出行主要集中在50 km以内的范围,占日常出行频次的70%;在2016年全国平均电网结构下,续驶里程超过50 km的PHEV比传统燃油车少排放15%以上的二氧化碳;在高比例可再生能源电网结构的地区,PHEV碳排放可降至100. 0 g·km~(-1)以下,相比平均电网结构下碳排放水平降低幅度在28%以上;在2016年平均电网结构及技术水平下,纯电续驶里程增加(50~100 km)、充电频率增加(0. 5~2次·d~(-1))对碳排放的改善幅度不明显;与2016年相比,2020年PHEV燃油经济性和电耗水平的改善可降低32%的碳排放.
        Spatial-domain changes in the proportion of thermal power in the power grids of China and the duality of PHEV-driven energy have increased the complexity of research on the CO_2 emissions of plug-in hybrid electric vehicles( PHEVs). 130 000 km of driving data from 50 PHEV vehicles operating in Shanghai is studied to derive methods to evaluate the carbon dioxide emission of PHEV vehicles. The electric drive distance ratio of the PHEV and its influencing factors are analyzed. The effects of the electric range,charging frequency,and power grid composition on the carbon emission intensity of PHEV are analyzed,and the effect of the level of progress for PHEV in 2020 on CO_2 emission reductions is forecast. The results of the study show that the daily vehicle kilometers travelled by PHEV passenger cars in China's first-tier cities are mainly concentrated within a range of 50 km,accounting for 70% of total trips. Under the national grid structure in 2016,PHEVs with a driving range of more than 50 km emit at least 15% less carbon dioxide than conventional vehicles. In areas with a high proportion of renewable energy grid structure,PHEV carbon dioxide emissions can be reduced to below 100. 0 g·km~(-1),which is more than 28% lower than that achieved using the national grid structure. Based on the national grid structure and technical level in 2016,increasing the all-electric range( 50-100 km) and the charging frequency( 0. 5 times·d~(-1) to 2 times·d~(-1)) has no obvious effect on reducing CO_2 emissions. The PHEV fuel economy and electricity consumption levels in 2020 could reduce carbon dioxide emissions by 32% compared to those in 2016.
引文
[1]蒋晶晶,叶斌,计军平,等.中国碳强度下降和碳排放增长的行业贡献分解研究[J].环境科学,2014,35(11):4378-4386.Jiang J J, Ye B, Ji J P, et al. Research on contribution decomposition by industry to China's carbon intensity reduction and carbon emission growth[J]. Environmental Science,2014,35(11):4378-4386.
    [2]段杰雄,翟卫欣,程承旗,等.中国PM2. 5污染空间分布的社会经济影响因素分析[J].环境科学,2018,39(5):2498-2504.Duan J X,Zhai W X,Cheng C Q,et al. Socio-economic factors influencing the spatial distribution of PM2. 5concentrations in China:an exploratory analysis[J]. Environmental Science,2018,39(5):2498-2504.
    [3]施晓清,李笑诺,杨建新.低碳交通电动汽车碳减排潜力及其影响因素分析[J].环境科学,2013,34(1):385-394.Shi X Q,Li X N,Yang J X. Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors[J]. Environmental Science,2013,34(1):385-394.
    [4]卢亚灵,周佳,程曦,等.京津冀地区黄标车政策的总量减排效益评估[J].环境科学,2018,39(6):2566-2575.Lu Y L,Zhou J,Cheng X,et al. Emission reduction benefits when eliminating yellow-label vehicles in the Jing-Jin-Ji region[J]. Environmental Science,2018,39(6):2566-2575.
    [5]能源与交通创新中心(i CET).中国乘用车燃料消耗量发展年度报告2017[R].北京:能源与交通创新中心,2017. 1-47.
    [6]黄成,胡磬遥,鲁君.轻型汽油车尾气OC和EC排放因子实测研究[J].环境科学,2018,39(7):3110-3117.Huang C,Hu Q Y,Lu J. Measurements of OC and EC emission factors for light-duty gasoline vehicles[J]. Environmental Science,2018,39(7):3110-3117.
    [7] National Environment Agency. New vehicular emissions scheme to replace carbon-based emissions vehicle scheme from 1 January2018[EB/OL]. http://www. nea. gov. sg/corporatefunctions/newsroom/news-releases/new-vehicular-emissionsscheme,2018-05-29.
    [8] Europe's Energy Portal. Carbon Dioxide Emissions of Cars in Europe 2009[EB/OL]. https://www. energy. eu/car-co2-emissions,2018-05-29.
    [9] Peng T D,Ou X M,Yan X Y. Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model[J]. Chemical Engineering Research and Design,2018,131:699-708.
    [10] Peng T D,Zhou S,Yuan Z Y,et al. Life cycle greenhouse gas analysis of multiple vehicle fuel pathways in China[J].Sustainability,2017,9(12):2183.
    [11] Huo H,Zhang Q,Wang M Q,et al. Environmental implication of electric vehicles in China[J]. Environmental Science&Technology,2010,44(13):4856-4861.
    [12]赵雲泰,黄贤金,钟太洋,等. 1999~2007年中国能源消费碳排放强度空间演变特征[J].环境科学,2011,32(11):3145-3152.Zhao Y T,Huang X J,Zhong T Y, et al. Spatial pattern evolution of carbon emission intensity from energy consumption in China[J]. Environmental Science,2011,32(11):3145-3152.
    [13]国家能源局.国家能源局关于2017年度全国可再生能源电力发展监测评价的通报国能发新能〔2018〕43号[EB/OL].http://zfxxgk. nea. gov. cn/auto87/201805/t20180522_3179.htm,2018-05-29.
    [14]秦雨,张强,李鑫,等.中国燃煤电厂大气污染物排放的健康影响特征[J].环境科学,2018,39(12):5289-5295.Qin Y,Zhang Q,Li X,et al. Patterns of mortality from air pollutant emissions in china's coal-fired power plants[J].Environmental Science,2018,39(12):5289-5295.
    [15]林晓丹,田良,吕彬,等.基于出行服务的纯电动公交车节能减排效益分析[J].环境科学,2015,36(9):3515-3521.Lin X D, Tian L, LüB, et al. Energy conservation and emissions reduction benefits analysis for battery electric buses based on travel services[J]. Environmental Science,2015,36(9):3515-3521.
    [16] Global EV outlook 2017:two million and counting[R].International Energy Agency,2017. 1-71.
    [17] Wang H W,Hao X. Data base of electric vehicle production in China[R]. Beijing:State Key Laboratory of Automotive Safety and Energy,Tsinghua University,2018. 1-5.
    [18]荣威汽车(上海)官方网站.上汽新能源技术获2017年度国家科学技术进步奖[EB/OL]. http://www. roewe. com. cn/html/news/20180110/2411. html,2018-01-10.
    [19]比亚迪汽车.厉害了宋DM!荣获CCPC插混SUV组综合性能金奖[EB/OL]. http://www. bydauto. com. cn/news-id-2832. html,2018-01-15.
    [20]长安汽车.发力新能源长安汽车推出“香格里拉计划”全新战略[EB/OL].长安汽车, https://www. sohu. com/a/199143391_134123,2017-10-19.
    [21]林婷,吴烨,何晓旖,等.中国氢燃料电池车燃料生命周期的化石能源消耗和CO2排放[J].环境科学,2018,39(8):3946-3953.Lin T,Wu Y,He X Y,et al. Well-to-Wheels fossil energy consumption and CO2emissions of hydrogen fuel cell vehicles in China[J]. Environmental Science,2018,39(8):3946-3953.
    [22]施晓清,孙赵鑫,李笑诺,等.北京电动出租车与燃油出租车生命周期环境影响比较研究[J].环境科学,2015,36(3):1105-1116.Shi X Q,Sun Z X,Li X N,et al. Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing[J]. Environmental Science,2015,36(3):1105-1116.
    [23] Wang H W, Zhang X B, Ouyang M G. Energy and environmental life-cycle assessment of passenger car electrification based on Beijing driving patterns[J]. Science China Technological Sciences,2015,58(4):659-668.
    [24] Stephan C H,Sullivan J. Environmental and energy implications of plug-in hybrid-electric vehicles[J]. Environmental Science&Technology,2008,42(4):1185-1190.
    [25] Raykin L,Ma Clean H L,Roorda M J. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles[J]. Environmental Science&Technology,2012,46(11):6363-6370.
    [26] Ma H R,Balthasar F,Tait N,et al. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles[J]. Energy Policy,2012,44:160-173.
    [27] Wolfram P,Lutsey N. Electric vehicles:literature review of technology costs and carbon emissions[EB/OL]. http://www.theicct. org/lit-review-ev-tech-costs-co2-emissions-2016,2016-07-18.
    [28] Samaras C,Meisterling K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles:implications for policy[J]. Environmental Science&Technology,2008,42(9):3170-3176.
    [29] Onat N C,Kucukvar M,Tatari O. Conventional,hybrid,plugin hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States[J]. Applied Energy,2015,150:36-49.
    [30] Wu X,Aviquzzaman M,Lin Z H. Analysis of plug-in hybrid electric vehicles'utility factors using GPS-based longitudinal travel data[J]. Transportation Research Part C:Emerging Technologies,2015,57:1-12.
    [31] Requia W J,Adams M D,Arain A,et al. Carbon dioxide emissions of plug-in hybrid electric vehicles:a life-cycle analysis in eight Canadian cities[J]. Renewable and Sustainable Energy Reviews,2017,78:1390-1396.
    [32] Kelly J C,Mac Donald J S,Keoleian G A. Time-dependent plugin hybrid electric vehicle charging based on national driving patterns and demographics[J]. Applied Energy,2012,94:395-405.
    [33] Mac Pherson N D,Keoleian G A,Kelly J C. Fuel economy and greenhouse gas emissions labeling for plug-in hybrid vehicles from a life cycle perspective[J]. Journal of Industrial Ecology,2012,16(5):761-773.
    [34] Faria R,Marques P,Moura P,et al. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles[J]. Renewable and Sustainable Energy Reviews,2013,24:271-287.
    [35] Wang H W,Zhang X B,Ouyang M G. Energy consumption of electric vehicles based on real-world driving patterns:a case study of Beijing[J]. Applied Energy,2015,157:710-719.
    [36] Zhang X B,Wang H W. Utility factors derived from Beijing passenger car travel survey[R]. Netherlands:The FISITA 2014World Automotive Congress,2014. 1-10.
    [37] Davies J,Kurani K S. Moving from assumption to observation:implications for energy and emissions impacts of plug-in hybrid electric vehicles[J]. Energy Policy,2013,62:550-560.
    [38] Tarroja B,Shaffer B,Samuelsen S. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies[J]. Energy,2015,87:504-519.
    [39] Hu X S,Zou Y,Yang Y L. Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization[J]. Energy,2016,111:971-980.
    [40] Shiau C S N,Samaras C,Hauffe R,et al. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles[J]. Energy Policy,2009,37(7):2653-2663.
    [41]上海市新能源汽车公共数据采集与监测研究中心.上海市新能源汽车产业大数据研究报告(2017)[M].上海:上海交通大学出版社,2017. 135-268.
    [42]中华人民共和国工业和信息化部.关于征求推荐性国家标准《电动汽车远程服务与管理系统技术规范》(征求意见稿)意见的通知[EB/OL]. http://www. miit. gov. cn/n1146295/n1652858/n1653100/n3767755/c4810837/content.html,2018-04-25.
    [43] Zou Y,Wei S Y,Sun F C,et al. Large-scale deployment of electric taxis in Beijing:a real-world analysis[J]. Energy,2016,100:25-39.
    [44] Hao X,Wang H W,Ouyang M G. Electric distance ratio of PHEV in China mega city—Based on mass driving and charging data[R]. Busan,Korea:FISITA,2016.
    [45] GB/T 19753-2013,轻型混合动力电动汽车能量消耗量试验方法[S].
    [46]胡锦涛.中华人民共和国道路交通安全法[R].中华人民共和国主席令第47号,全国人民代表大会常务委员会,2011.
    [47] SAE J2841,Utility factor definitions for plug-in hybrid electric vehicles using travel survey data[S].
    [48]杨倩鹏,林伟杰,王月明,等.火力发电产业发展与前沿技术路线[J].中国电机工程学报,2017,37(13):3787-3794.Yang Q P,Lin W J,Wang Y M,et al. Industry development and frontier technology roadmap of thermal power generation[J].Proceedings of the CSEE,2017,37(13):3787-3794.
    [49]中国电力企业联合会.中国煤电清洁发展报告[M].北京:中国电力出版社,2017. 51.China Electricity Council. Clean development of coal-fired power in China[M]. Beijing:China Electric Power Press,2017. 51.
    [50]节能与新能源汽车技术路线图战略咨询委员会,中国汽车工程学会.节能与新能源汽车技术路线图[M].北京:机械工业出版社,2016. 63-86.Energy and New Energy Vehicle Technology Roadmap Strategy Advisory Committee, China Automobile Engineering Society.Technology roadmap for energy saving and new energy vehicles[M]. Beijing:Machinery Industry Press,2016. 63-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700