用户名: 密码: 验证码:
Ti_4O_7功能陶瓷材料研究与应用现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress and Application Status of Ti_4O_7,the Functional Ceramic Material
  • 作者:王译文 ; 王海斗 ; 马国政 ; 陈书赢 ; 何鹏飞 ; 丁述宇
  • 英文作者:WANG Yiwen;WANG Haidou;MA Guozheng;CHEN Shuying;HE Pengfei;DING Shuyu;National Key Lab for Remanufacturing,Academy of Armored Forces Engineering;
  • 关键词:Ti4O7功能材料 ; 导电陶瓷 ; 微观结构 ; 电极 ; 电催化载体 ; 热电材料 ; 锂硫电池 ; 燃料电池
  • 英文关键词:Ti4O7 functional material;;conductive ceramics;;microstructure;;electrode;;electrocatalyst support;;thermoelectric material;;lithiumsulfur battery;;fuel cell
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:陆军装甲兵学院装备再制造技术国防科技重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51535011; 51675531);; 北京市自然科学基金(3172038)~~
  • 语种:中文;
  • 页:CLDB201901018
  • 页数:9
  • CN:01
  • ISSN:50-1078/TB
  • 分类号:146-154
摘要
TinO2n-1是一类应用前景广阔、极具研究价值的高性能导电陶瓷材料。它具有独特的物理、化学和电化学性能,晶体结构中的氧缺陷除了使其拥有自身的陶瓷特性外,还赋予其类金属的导电性能,打破了其因导电性能差而限制陶瓷材料的进一步推广应用。Ti_4O_7是TinO2n-1中导电性能最佳的材料,同时它还拥有诸多优异的性质如敏锐的光响应能力、较强的耐酸腐蚀性和较好的电化学稳定性,这些独特的性质引起了材料研究者对其的高度关注,并将其广泛应用于电化学、热电材料、储能材料、光催化降解等领域。目前,研究人员基于Ti_4O_7的电子导电性和化学稳定性,主要将其用作电池电极和电催化载体材料,生产工艺已逐渐成熟并实现商业化。然而,Ti_4O_7的生产制备工艺还存在许多不足。粒径大小、孔隙率和结晶程度等因素均会对Ti_4O_7的性能产生影响。工业上主要采用高温还原钛源前驱体的方法,经过高温处理后的Ti_4O_7通常存在颗粒团聚、烧结严重、比表面积大的问题,这严重影响了Ti_4O_7的性能。为解决高温处理引发的固有问题,研究人员在制备工艺的设计优化方面不断进行尝试,在优化高温合成方法的同时,也探索了一些中低温合成制备途径,但依旧存在产物纯度不高、生产能耗大等问题,工艺细节还需深入研究。目前制备工艺的主要研究方向为:(1)提高制备产物的纯度;(2)细化晶粒,控制粉体粒径大小;(3)制备出形貌可控的粉体。针对Ti_4O_7制备过程中出现的问题,研究人员不断引入新技术。在溶胶凝胶法的基础上利用静电纺丝技术制备出高比表面积的核壳结构中空管道材料,烧结温度降低了近20%;首次采用微波辐射的加热方式,微波下辐射30 min即可制备出形貌可控的Ti_4O_7。近两年,随着研究的不断深入,Ti_4O_7的各项优异性能得到了进一步开发和应用,在锂离子电池、锂硫电池、金属-空气电池、燃料电池中表现出更卓越的快速充放电性能和循环稳定性,并在储能材料、热电材料和光电材料等新能源领域得到了应用。本文介绍了Ti_4O_7的组成结构和理化性质,归纳了Ti_4O_7陶瓷的主要制备工艺及典型应用,分析总结了各类制备工艺的优缺点和应用需求,并对本领域今后的热点研究方向和发展趋势进行了展望,为Ti_4O_7功能陶瓷材料的推广应用提供了参考。
        TinO2 n-1 are considered to be a kind of high-performance conductive ceramic material,which have broad application prospect and crucial research value due to its unique physical,chemical and electrochemical properties. In addition to its own ceramic characteristics,the oxygen defects in the crystal structure endow it with the metal-like conductive properties,which break up the limitation on further application of ceramic materials because of its poor conductivity. Ti_4O_7 exhibits the best conductivity among TinO2 n-1 materials,what's more,it also have many other remarkable properties such as outstanding photoresponse,strong acid and alkali corrosion resistance and better electrochemical stability,which has aroused great concern of material researchers and has been widely used in the field of electrochemistry,thermoelectric materials,energy storage material,photocatalytic degradation and so on. Currently,by virtue of its distinguished electron conductivity and chemical stability,Ti_4O_7 was mainly used as battery electrodes and electrocatalytic support materials. The production process has been mature and commercialized.The preparationprocess of Ti_4O_7 still have many defects. Particle size,porosity,crystallinity and other factors all exert a great influence on the performance of Ti_4O_7. The method of revivifying titanium precursor at high temperature has been commonly applied to industry. However,the Ti_4O_7 which was treated at high temperature would come out a series problems such as particle agglomeration,serious sintering and high specific surface area,resulting in the poor performance of Ti_4O_7. Therefore,researchers are trying to optimize the preparation process,and explore other synthetic methods at low temperature,but there are still some unsolved problems such as low product purity and high energy consumption. The details of the process need to be further studied. At present,three main issues consititute the majority of the research upon: Ⅰ. improving the purity of the product; Ⅱ. refining grain size and controlling particle size,Ⅲ. preparation of powder with controlled morphology. Researchers constantly introduce new technologies into the preparationprocess of Ti_4O_7. On the basis of the sol-gel method,the core-shell hollow pipe material with high specific surface area was successfully prepared via electrospining technology,while the sintering temperature was reduced by nearly20%. The microwave heating method was firstly adopted to obtained Ti_4O_7 with controlled structures by radiating only 30 minutes under microwave. In recent two years,with the deepening of research,various excellent properties of Ti_4O_7 have been further developed and utilized. Ti_4O_7 shows superior rapid charge and discharge properties and cycle stability in lithium-ion batteries,lithium-sulfur batteries,metal-air batteries,fuel cells. What's more,it has been applied in energy storage materials,thermoelectricity materials,photoelectricity materials and many other new energy fields.This paper introduces the composition,structure and physicochemical properties of Ti_4O_7,summarizes the main preparation methods and typical applications of Ti_4O_7 ceramic,analyzes the advantages and disadvantages of various preparation methods and application requirements. And outlooks the future research directions and development trends in the field,which provide some references for the popularization and application of Ti_4O_7 functional ceramic material.
引文
1 Andersson S. Acta Chemica Scandinavica,1957,11(10),1641.
    2 Han W Q,Zhang Y. Applied Physics Letters,2008,92(20),37.
    3 Graves J E,Pletcher D,Clarke R L,et al. Journal of Applied Electrochemistry,1992,22(3),200.
    4 Bartholomew R F,Frankl D R. Physical Review,1969,187(3),828.
    5 Gusev A A,Avvakumov E G,Medvedev A Z H,et al. Science of Sintering,2007,39(1),51.
    6 Walsh F C,Wills R G A. Electrochimica Acta,2010,55(22),6342.
    7 Smith J R,Walsh F C,Clarke R L. Journal of Applied Electrochemistry,1998,28(10),1021.
    8 Ioroi T,Senoh H,Yamazaki S I,et al. ECS Transactions,2008,11(1),1041.
    9 Wang G,Liu Y,Ye J,et al. Journal of Alloys&Compounds,2017,704,18.
    10 Cass R B. U.S. patent,US4931213,1990.
    11 Hayfield P C S. Development of a new material-monolithic Ti4O7ebonexceramic,Royal Society of Chemistry,2001.
    12 Guan Dongbo,Ma Jian. Acta Physica Sinica,2012(1),397(in Chinese).管东波,毛健.物理学报,2012(1),397.
    13 Han W Q,Zhang Y. Applied Physics Letters,2008,92(20),37.
    14 Zhu R,Liu Y,Ye J,et al. Journal of Materials Science:Materials in Electronics,2013,24(12),4853.
    15 Zhang X,Liu Y,Ye J,et al. Micro&Nano Letters,2013,8(5),251.
    16 Harada S,Tanaka K,Inui H. Journal of Applied Physics,2010,108,804.
    17 Houlihan J F,Mulay L N. Materials Research Bulletin,1971,6(8),737.
    18 Weast R C. CRC handbook of chemistry and physics,CRC Press,1989.
    19 Clarke R L,Harnsberger S K. American Laboratory,1988,20,8.
    20 Nagasawa K,Kato Y,Bando Y,et al. Journal of the Physical Society of Japan,1970,29(1),241.
    21 Walsh F C,Wills R G A. Electrochimica Acta,2010,55(22),6342.
    22 Pang Q,Kundu D,Cuisinier M,et al. Nature Communications,2014,5,4759.
    23 Schlenker C,Buder R,Schlenker M,et al. Physica Status Solidi,2010,54(1),247.
    24 Weissmann M,Weht R. Physical Review B,2011,271(3 Pt 2),F552.
    25 Watanabe M,Ueno W,Hayashi T. Journal of Luminescence,2007,122(1),393.
    26 Gusev A A,Avvakumov E G,Vinokurova O B. Science of Sintering,2003,35(3),141.
    27 Watanabe M. Physica Status Solidi,2009,6(1),260.
    28 Kao W H,Patel P,Haberichter S L. Journal of the Electrochemical Society,1997,144(6),1907.
    29 Li X,Zhu A L,Qu W,et al. Electrochimica Acta,2010,55(20),5891.
    30 Babic'B,Gulicovski J,Gajic'-Krstajic'L,et al. Journal of Power Sources,2009,193(1),99.
    31 Igartua A,Fernández X,Areitioaurtena O,et al. Tribology International,2009,42(4),561.
    32 Gardos M N. Tribology Letters,2000,8(2-3),79.
    33 Graves J E,Pletcher D,Clarke R L,et al. Journal of Applied Electrochemistry,1991,21(10),848.
    34 Hayfield P C S,Hill A. Restoration of Buildings&Monuments,2000,6(6),647.
    35 Han W Q,Wang X L. Applied Physics Letters,2010,97(24),862.
    36 Andersson S,Magnéli A. Naturwissenschaften,1956,43(21),495.
    37 Chen G,Bare S R,Mallouk T E. Journal of the Electrochemical Society,2002,149(8),A1092
    38 Graves J E,Pletcher D,Clarke R L,et al. Journal of Applied Electrochemistry,1992,22(3),200.
    39 Yang Fan. Preparation of catalystsupport material by reduction from transition metal(Ti,Mo)oxide and electrochemical performance of the catalysts. Doctor’s thesis,Beijing University of Technology,2013(in Chinese).杨帆.过渡金属(Ti,Mo)氧化物还原制备载体及电催化性能研究.博士论文,北京工业大学,2013.
    40 Wang Yizhi. Primary investigations of Magnéli phase compounds and the Magnéli compounds based composites for some electrochemical applications. Doctor’s thesis,Beijing University of Technology,2016(in Chinese).王义智.Magnéli相化合物及其复合材料电化学应用初探.博士论文,北京工业大学,2016.
    41 Kolbrecka K,Przyluski J. Electrochimica Acta,1994,39(11-12),1591.
    42 Zhang X,Liu Y,Ye J,et al. Micro&Nano Letters,2013,8(5),251.
    43 Yao S,Xue S,Zhang Y,et al. Journal of Materials Science:Materials in Electronics,2017,28(10),7264.
    44 Tang C,Zhou D,Zhang Q. Materials Letters,2012,79(23),42.
    45 Sen W,Sun H,Yang B,et al. International Journal of Refractory Metals and Hard Materials,2010,28(5),628.
    46 Li X,Liu Y,Ye J. Journal of Materials Science Materials in Electronics,2016,27(4),3683.
    47 Kitada A,Hasegawa G,Kobayashi Y,et al. Journal of the American Chemical Society,2012,134(26),10894.
    48 Tian Man,Li Xueming,He Hongyun,et al. Journal of Functional Materials,2017,48(2),2177(in Chinese).田嫚,黎学明,贺洪云,等.功能材料,2017,48(2),2177.
    49 Lu Y,Matsuda Y,Sagara K,et al. Advanced Materials Research,2011,415-417(1),1291.
    50 Toyoda M,Yano T,Tryba B,et al. Applied Catalysis B Environmental,2009,88(1-2),160.
    51 Portehault D,Maneeratana V,Candolfi C,et al. ACS Nano,2011,5(11),9052.
    52 Maneeratana V,Portehault D,Chaste J,et al. Advanced Materials,2014,26(17),2654.
    53 Pang Q,Kundu D,Cuisinier M,et al. Nature Communications,2014,5,4759.
    54 Takeuchi T,Fukushima J,Hayashi Y,et al. Catalysts,2017,7(2),65.
    55 Lee H,Su J H,Seshadri R C,et al. Scientific Reports,2016,6,36581.
    56 Mei S,Jafta C J,Lauermann I,et al. Advanced Functional Materials,2017,27(26),1701176.
    57 Zhang X,Zhong X,Xu W,et al. Ionics,2017,1-6.
    58 Nazar L F,Kundu D,Black R,et al. Energy&Environmental Science,2014,8(4),1292.
    59 Krstajic N V,Vracar L M,Radmilovic V R,et al. Surface Science,2007,601(9),1949.
    60 Escalante-Garcia I L,Duron-Torres S M,Cruz J C,et al. Minerva Anestesiologica,2010,33(10),736.
    61 Duma A D,Wu Y C,Su W N,et al. Chemcatchem,2017,5(10),1155.
    62 Tang B,Wei H,Zhao D,et al. Solar Energy Materials&Solar Cells,2017,161,183.
    63 Zaky A M,Chaplin B P. Environmental Science&Technology,2013,47(12),6554.
    64 Geng P,Chen G. Separation&Purification Technology,2017,185,61.
    65 Marinkovski M,Paunovi c'P,Bla6evska Gilev J,et al. Advances in Natural Science:Theory and Applications,2012,1(3),215.
    66 Tsumura T,Hattori Y,Kaneko K,et al. Desalination,2004,169,269.
    67 Kwon D H,Kim K M,Jang J H,et al. Nature Nanotechnology,2010,5(2),148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700