用户名: 密码: 验证码:
深部承压水上含隐伏构造煤层底板渗流路径扩展规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expansion law of seepage path in the concealed structural floor of coal seam in deep confined water
  • 作者:赵家巍 ; 周宏伟 ; 薛东杰 ; 苏腾 ; 邓慧琳 ; 杨洪增
  • 英文作者:ZHAO Jiawei;ZHOU Hongwei;XUE Dongjie;SU Teng;DENG Huilin;YANG Hongzeng;School of Mechanics and Civil Engineering,China University of Mining and Technology (Beijing);School of Energy of Mining Engineering,China University of Mining and Technology(Beijing);State Key Laboratory of Coal Resources and Safe Mining;Jizhong Energy Group Corporation Limited;
  • 关键词:大采深 ; 奥灰承压水 ; 隐伏构造 ; 裂隙扩展 ; 渗流路径
  • 英文关键词:deep mining;;confined water of ordovician limestone;;concealed structure;;crack extension;;seepage path
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)力学与建筑工程学院;中国矿业大学(北京)能源与矿业学院;煤炭资源与安全开采国家重点实验室;冀中能源集团有限责任公司;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家重点研发计划资助项目(2016YFC0600704);; 国家自然科学基金青年基金资助项目(51504257);; 煤矿灾害动力学与控制国家重点实验室开放课题资助项目(2011DA105287-FW201604)
  • 语种:中文;
  • 页:MTXB201906023
  • 页数:10
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:216-225
摘要
针对邯邢矿区矿井开采深度逐渐加深与采动影响下隐伏构造活化而导致底板奥灰层突水威胁日益加重的问题,研究大采深、高水压条件下含不同隐伏构造类型底板高承压水的始渗条件和渗流路径扩展规律,以确定矿井底板突水条件及重点治理区域。从开采扰动、隐伏构造、承压水共同作用角度分析,根据典型突水矿井地质条件及突水原因分析,建立了含隐伏导含水构造的概化力学模型,通过断裂力学理论得出了含水裂隙的起裂条件、抗渗透强度及由主应力表达的裂隙扩展判据,应用弹性力学边界荷载在半无限板内传播的经典求解方法推导得出了采动应力与承压水压力耦合作用下含隐伏构造煤层底板的垂直应力、水平应力和剪切应力表达式,在所得应力分量基础上通过应力张量的不变量求解应力状态方程得到含水裂隙扩展判据中的主应力表达式,以邯邢矿区典型突水矿区地质与开采参数为例进行算例分析,通过编制Matlab计算程序计算得出底板裂隙的扩展路径。进而采用可模拟岩石破裂声发射且裂隙扩展可视化效果较好的RFPA数值软件进行验证分析,再现了底板渗流路径演化过程。理论计算与数值分析结果表明:隐伏构造的局部应力扰动作用影响了渗流路径的扩展方向,使3种类型底板分别呈现出不同的渗流路径,对于完整型底板,渗流裂隙由奥灰承压水层顶界面至采空区两侧边界呈"正八字"形向采空区扩展;对于隐伏陷落柱型底板,渗流裂隙沿陷落柱顶界面呈"倒八字"形向上发散式扩,至底板28 m深度时与采动裂隙贯通而停止扩展,其延线分别指向采空区两侧边界展;而对于隐伏断层型底板,渗流裂隙则沿断层延线的反向扩展,至底板30 m深度时与采动裂隙贯通而停止扩展,其延线指向工作面后方,在底板含水裂隙自下而上与底板采动裂隙自上而下联合扩展作用下最终贯通形成底板奥灰水至采煤工作面的渗流通道。基于理论计算和数值模拟得出的底板承压水渗流路径扩展规律,在实际工程中可结合微震监测技术来实时动态捕捉煤层底板隐伏导含水构造活化的前兆信息,进而实现底板突水路径的预测预报和快速重点区域治理。
        With the mining depth gradually increases,the coal mines in Hanxing mining area are facing an increasing serious problem of water inrush threat from the ordovician limestone caused by the activation of concealed structures under the influence of mining. In order to determine the water inrush condition and the key treatment areas of coal seam floor,the initial seepage conditions and seepage path expansion laws of high confined water with different concealed structural types under the conditions of large deep and high water pressure should be studied. Therefore,the generalized mechanics models were established from the coaction mechanism of mining disturbance,concealed structure,combination of confined water,based on the analysis of geological characteristics and water inrush of typical coal mines in Hanxing mining area.According to the generalized mechanics models,the cracking condition,seepage strength and water-crack expansion criterion expressed by the principal stresses were obtained by the theoretical analysis of fracture mechanics.Then a classical solution method of boundary loads propagation in semi-infinite elastic plates was applied to derivate the mathematical expressions of the vertical,horizontal and shear stresses of the concealed structural coal seam floor under the coupling of mining stress and confined water pressure.Based on the obtained stress components,the stress state equation was solved by the invariants of the stress tensor to obtain the principal stress expression in the above water-crack expansion criterion.Taking the geological and mining parameters of the typical water inrush mine area in Hanxing area as an example,the case study was carried out and the extended path of coal seam floor crack was calculated using the Matlab program.Furthermore,the RFPA numerical simulation software,which can effectively simulate rock rupture and make fracture extension process visual,was applied to analyze the mechanical behavior of floor with different types of concealed structure and reconstruct the evolution process of confined water seepage path.The results of theoretical calculation and numerical analysis showed that the local stress disturbance of the concealed structure affected the expansion direction of the seepage path,so that three types of coal seam floor respectively showed different seepage paths.For the intact type of coal seam floor,the seepage crack extended to the boundary of both sides of the goaf with a "positive eight-character"shape from ordovician confined water layer.For the coal seam floor with concealed collapsed column,the seepage crack extended to the boundary of both sides of the goaf with an "inverted eight-character"shape from the top interface of the collapsed column to the depth of 28 m.For the coal seam floor with concealed fault,the seepage crack extended along the opposite direction of the fault extension line and stopped at depth of 30 m.The floor water-bearing fracture and the mining fracture expanded to each other and finally formed a seepage channel from ordovician confined water layer to the coal mining face.The result of seepage crack extension law of coal floor with different types of concealed structure obtained by theoretical analysis and numerical simulation could be used for predicting the confined water inrush path and targeted treatment of ordovician limestone kaster water disaster,in combination with microseismic monitoring technology which real-timely and dynamically catch the precursor information on concealed structure activation.
引文
[1]赵庆彪,蒋勤明,高春芳.邯邢矿区深部煤层底板突水机理研究[J].煤炭科学技术,2016,44(3):117-121,176.ZHAO Qingbiao,JIANG Qinming,GAO Chunfang.Study on floor water inrush mechanism of deep seam in Hanxing mining area[J].Coal Science and Technology,2016,44(3):117-121,176.
    [2]薛东杰,周宏伟,彭瑞东,等.基于应力降的非连续支承压力强扰动特征研究[J].岩石力学与工程学报,2018,37(5):1080-1095.XUE Dongjie,ZHOU Hongwei,PENG Ruidong,et al.Study of drainage and percolation of nitrogen-water flooding in tight coal by NMR imaging[J].Rock Mechanics and Rock Engineering,2018,37(5):1080-1095.
    [3]赵庆彪.奥灰岩溶水害区域超前治理技术研究及应用[J].煤炭学报,2014,39(6):1112-1117.ZHAO Qingbiao. Ordovician limestone karst water disaster regional advanced governance technology study and application[J].Journal of China Coal Society,2014,39(6):1112-1117.
    [4]刘建功,踹晓宇,李玉宝,等.矿井水害微震监测预警理论与技术研究[M].北京:煤炭工业出版社,2017.
    [5]施龙青.底板突水机理研究综述[J].山东科技大学学报(自然科学版),2009,28(3):17-23.SHI Longqing. Summary of research on mechanism of water-inrush from seam floor[J]. Journal of Shandong University of Science and Technology(Natural Science),2009,28(3):17-23.
    [6]刘天泉.矿山采动影响学及特殊开采技术的新进展[A].中国岩石力学与工程学会第三次大会论文集[C].北京:中国科学技术出版社,1994:205-210.
    [7]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997:89-98.
    [8]王作宇.煤层底板岩体移动的“原位张裂”理论[J].河北煤炭,1988,9(3):29-31.
    [9]武强,贾秀,曹丁涛,等.华北型煤田中奥陶统碳酸盐岩古风化壳天然隔水性能评价方法与应用[J].煤炭学报,2014,39(8):1735-1741.WU Qiang,JIA Xiu,CAO Dingtao,et al. Impermeability evaluation method and its application on the ancient weathering crust of bonatite in Middle Ordovician system in North China coalfield[J].Journal of China Coal Socicty,2014,39(8):1735-1741.
    [10]许学汉.煤矿突水预报研究[M].北京:地质出版社,1991.
    [11]陈忠辉,胡正平,李辉,等.煤矿隐伏断层突水的断裂力学模型及力学判据[J].中国矿业大学学报,2011,40(5):673-677.CHEN Zhonghui,HU Zhengping,LI Hui,et al. Fracture mechanical model and criteria of insidious fault water inrush in coal mines[J].Journal of China University of Mining&Technology,2011,40(5):673-677.
    [12]刘伟韬,申建军,贾红果.深井底板采动应力演化规律与破坏特征研究[J].采矿与安全工程学报,2016,33(6):1045-1051.LIU Weitao,SHEN Jianjun,JIA Hongguo. Mining-induced stress evolution law and failure characteristics of floor in deep mine[J].Journal of Mining and Safety Engineering,2016,33(6):1045-1051.
    [13]鲁海峰,姚多喜,胡友彪,等.水压影响下煤层底板采动破坏深度弹性力学解[J].采矿与安全工程学报,2017,34(3):452-458.LU Haifeng,YAO Duoxi,HU Youbiao,et al. Elasticity solution for failure depth of mining floor under water pressure[J]. Journal of Mining and Safety Engineering,2017,34(3):452-458.
    [14]李连崇,唐春安,李根,等.含隐伏断层煤层底板损伤演化及滞后突水机理分析[J].岩土工程学报,2009,31(12):1838-1844.LI Lianchong,TANG Chun’an,LI Gen,et al. Damage evolution and delayed groundwater inrush from micro faults in coal seam floor[J].Chinese Journal of Geotechnical Engineering,2009,31(12):1838-1844.
    [15]边凯.赵各庄矿深部煤层底板突水危险性与断裂滞后突水评价[D].北京:中国矿业大学(北京),2015.BIAN Kai.Risk assessment of water inrush from deep coal floor and lagging water inrush from fractures in Zhaogezhuang mine[D].Beijing:China University of Mining&Science(Beijing),2015.
    [16]陆银龙.渗流-应力耦合作用下岩石损伤破裂演化模型与煤层底板突水机理研究[D].徐州:中国矿业大学,2013.LU Yinlong. Hydro-mechanical modeling of fracturing evolution in rocks and mechanism of water-inrush from coal seam floor[D].Xuzhou:China University of Mining&Technology,2013.
    [17]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,18(4):11-18.LI Baiying. Development and application of ‘Down Three Zones’in the prediction of the water inrush from coalbed floor aquifertheory[J]. Journal of Shandong Mining Institute(Natural Science),1999,18(4):11-18.
    [18] B BATDORF S,G CROSE J.A statistical theory for the fareture of frittle strueture subjected to nonuniform relyaxial stresses.[J]. International Journal of Applied Mechanics,1974,41:459-464.
    [19]赵庆彪,赵昕楠,武强,等.华北型煤田深部开采底板“分时段分带突破”突水机理[J].煤炭学报,2015,40(7):1601-1607.ZHAO Qingbiao,ZHAO Xinnan,WU Qiang,et al. Water burst mechanism of‘divided period and section burst’at deep coal seam floor in North China type coalfield mining area[J].Journal of China Coal Society,2015,40(7):1601-1607.
    [20]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报,1992,17(2):32-39.GAO Yanfa,LI Baiying. Investigation of rules of floor rock failure in the workings with risk of ordovician confined water[J].Journal of China Coal Society,1992,17(2):32-39.
    [21]徐秉业,黄炎,刘信声,等.弹性力学与塑性力学解题指导及习题集[M].北京:高等教育出版社,1986.
    [22] JOHNSON W,MELLOR P B. Plasticity for mechanical engineers[M].London:D Van Nostrand Company Ltd.,1962.
    [23]董鑫,白良,肖建军,等.应力空间内主应力及主方向的解析表达式[J].昆明理工大学学报(理工版),2004,29(1):89-92.DONG Xin,BAI Liang,XIAO Jianjun,et al.Pasred currency formula of mian stress.and main direction in stress space[J]. Journal of Kunming University of Science and Technology(Science and Technology),2004,29(1):89-92.
    [24]王凯.主应力的计算公式[J].力学与实践,2014,36(6):783-785.WANG Kai.Computation formula of main stress[J].Mechanics and Practice,2014,36(6):783-785.
    [25]杨天鸿,师文豪,李顺才,等.破碎岩体非线性渗流突水机理研究现状及发展趋势[J].煤炭学报,2016,41(7):1598-1609.YANG Tianhong,SHI Wenhao,LI Shuncai,et al. State of the art and trends of water inrush mechanism of nonlinear flow in fractured rock mass[J].Journal of China Coal Society,2016,41(7):1598-1609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700