用户名: 密码: 验证码:
干旱地区棉田连作对土壤氮素含量及氮转化速率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of continuous cotton cropping on soil nitrogen contentand its transformation rate in arid area
  • 作者:何学敏 ; 吕光辉 ; 秦璐 ; 李岩 ; 刘晓星
  • 英文作者:HE Xue-min;LV Guang-hui;QIN Lu;LI Yan;LIU Xiao-xing;Institute of Arid Ecology and Environment, Xinjiang University;Post-Doctoral Research Center for Ecology,Xinjiang University;Xinjiang Key Laboratory of Oasis Ecology;Xinjiang Academy of Environmental Protection Science;Yili State Environmental Monitoring Detachment;
  • 关键词:连作棉田 ; 氮素形态 ; 氮转化速率 ; 土壤pH值 ; 土壤水分 ; 干旱地区
  • 英文关键词:cotton field for continuous cropping;;nitrogen forms;;nitrogen transformation rate;;soil pH;;soil moisture;;arid area
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:新疆大学干旱生态环境研究所;新疆大学生态学博士后科研流动站;新疆绿洲生态教育部重点实验室;新疆环境保护科学研究院;伊犁州环境监察支队;
  • 出版日期:2019-03-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.173
  • 基金:新疆维吾尔自治区重点实验室开放课题(2015KL004);; 新疆大学博士科研启动基金(BS150258)
  • 语种:中文;
  • 页:GHDQ201902011
  • 页数:9
  • CN:02
  • ISSN:61-1088/S
  • 分类号:70-77+86
摘要
为研究干旱地区棉田不同连作年限对土壤氮素含量和氮转化速率的影响,选取新疆艾比湖流域内精河县托托乡和农五师91团0、1、5、10、20 a和30 a棉田为研究对象,以棉田连作下土壤理化性质变化为基础,结合土壤氮素含量和氮转化速率,定量研究了连作棉田土壤氮转化速率变化规律及生态驱动因素。结果表明:(1)旱区连作棉田土壤硝态氮为无机氮主要组成,不同连作年限中土壤硝化作用均能将铵态氮转化为硝态氮,年限间差异不显著且硝态氮总量普遍偏低(平均为5.56±0.28 mg·kg~(-1));土壤碱解氮含量均显著低于未开垦土壤,仅为对照样地的16.37%~28.40%(P<0.05),土壤铵态氮和亚硝态氮含量随着连作年限的增加逐渐达到动态平衡。(2)连作初期会降低土壤硝化和反硝化速率,连作10 a旱区棉田土壤硝化率和反硝化率均降到最低(分别为23.62±1.45μg·kg~(-1)·h~(-1)和5.673±4.632μg·kg~(-1)·h~(-1)),至连作后期显著增加。(3)土壤pH值对土壤硝化速率和反硝化速率的影响最大(总效应分别为0.5310和0.6516),土壤硝化率和反硝化率分别在土壤pH值达到阈值范围(8.37和8.01)时达到最大值(91.333μg·kg~(-1)·h~(-1))和最小值(19.271μg·kg~(-1)·h~(-1));土壤水分是影响反硝化作用的第二重要因子。
        Continuous cotton cropping has certain negative effects on soil nutrients status, especially nitrogen(N) content and its transformation rate. Investigating the differences and their influence factors of soil N and N transformation rates in different continuous cropping years in arid area, which could provide a theoretical basis for the sustainable development of farmland in arid area. Soil samples from 0~20 cm layers were collected from uncultivated land(0 year, as a control) and five continuous cropping cotton fields at different cultivation times of 1, 5, 10, 20, and 30 years, respectively. Based on the changes of soil physical and chemical properties in the continuous cotton cropping field, combined with soil N contents and N transformation rates, we studied the change of N conversion rate and ecological driving factors in the continuous cotton cropping field. The results showed that:(1) Soil nitrate N was the main component of inorganic N in the continuous cotton cropping field in arid area. There was no significant difference among years and total nitrate N was generally low with an average of 5.56±0.28 mg·kg~(-1). Soil available N content in the soil was significantly lower than in uncultivated soil, which were only 16.37%~28.40% of the control(P<0.05). Soil ammonium N and nitrite N reached balance with years of continuous cropping;(2) The early stage of continuous cropping had significantly lower soil nitrification and denitrification rates that reached the lowest at 10 years(23.62±1.45 μg·kg~(-1)·h~(-1) and 5.673±4.632 μg·kg~(-1)·h~(-1), respectively). Then, it increased with increasing time, especially, in the later time;(3) Soil pH had the most influence on soil nitrification and denitrification rates(The total effects were 0.5310 and 0.6516, respectively). The thresholds of soil pH values for the soil nitrification and denitrification were 8.37 and 8.01, at which the soil nitrification and denitrification rates were at the maximum of 91.333 μg·kg~(-1)·h~(-1) and the minimum rate of 19.271 μg·kg~(-1)·h~(-1), respectively. Soil moisture was the second important factor affecting denitrification.
引文
[1] Rivera-Reyes J G,Peraza-Luna F A,Serratos-Arevalo J C,et al.Effect of nitrogen and phosphorus fertilization on phytic acid concentration and vigor of oat seed (var.Saia) in Mexico[J].Phyton,2009,78(1):37-42.
    [2] Thorup-Kristensen K.Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content,and how can this be measured?[J].Plant & Soil,2001,230(2):185-195.
    [3] Müller C,Rütting T,Kattge J,et al.Estimation of parameters in complex 15N tracing models by Monte Carlo sampling[J].Soil Biology and Biochemistry,2007,39(3):715-726.
    [4] 周伟,吕腾飞,杨志平,等.氮肥种类及运筹技术调控土壤氮素损失的研究进展[J].应用生态学报,2016,27(9):3051-3058.
    [5] Drury C F,Yang X M,Reynolds W D,et al.Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn,soybean and winter wheat[J].Canadian Journal of Soil Science,2008,88(2):163-174.
    [6] 蔡延江,王小丹,丁维新,等.冻融对土壤氮素转化和N2O排放的影响研究进展[J].土壤学报,2013,50(5):1032-1042.
    [7] 田景山,虎晓兵,勾玲,等.新疆棉花生育后期夜间增温对纤维产量和比强度的影响[J].作物学报,2012,38(1):140-147.
    [8] 徐文修,罗明,李银平,等.作物茬口对连作棉田土壤环境及棉花产量的影响[J].农业工程学报,2011,27(3):271-275.
    [9] Gong L,He G X,Liu W.Long-term cropping effects on agricultural sustainability in Alar Oasis of Xinjiang,China[J].Sustainability,2016,8(1):61.
    [10] Dou F,Wright A L,Rao S M,et al.Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping[J].Pedosphere,2016,26(5):618-625.
    [11] Zhang W,Long X Q,Huo X D,et al.16S rRNA-based PCR-DGGE analysis of actinomycete communities in fields with continuous cotton cropping in Xinjiang,China[J].Soil Microbiology,2013,66(2):385-393.
    [12] 刘建国,张伟,李彦斌,等.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J].中国农业科学,2009,42(2):725-733.
    [13] 徐文修,罗明,李大平,等.不同连作年限棉田土壤理化性质及微生物区系变化规律研究[J].干旱地区农业研究,2014,32(3):134-138.
    [14] 玉苏甫·买买提,满苏比·沙比提,阿曼古丽·艾孜子.棉花连作对渭干河-库车河三角洲绿洲土壤理化性质的影响[J].干旱地区农业研究,2014,32(4):117-121.
    [15] Ingwersen J,Butterbach-Bahl K,Gasche R,et al.Barometric process separation:new method for quantifying nitrification,denitrification,and nitrous oxide sources in soils[J].Soil Science Society of America Journal,1999,63(1):117-128.
    [16] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:72-77,524.
    [17] Dong Q M,Zhao X Q,Wu G L,et al.Response of soil properties to yak grazing intensity in a Kobresia parva-meadow on the Qinghai-Tibetan Plateau,China[J].Journal of Soil Science and Plant Nutrition,2012,12(3):535-546.
    [18] Rosa S M,Kraemer F B,Soria M A,et al.The influence of soil properties on denitrifying bacterial communities and denitrification potential in no-till production farms under contrasting management in the Argentinean Pampas[J].Applied Soil Ecology,2014,75(8):172-180.
    [19] 曾文治,黄介生,谢华,等.不同暗管布置下棉田排水的硝态氮流失量分析[J].农业工程学报,2012,28(4):89-93.
    [20] Hou Z N,Li P F,Li B G,et al.Effects on fertigation scheme on N uptake and N use efficiency in cotton[J].Plant and Soil,2007,290(1-2):115-126.
    [21] 桂东伟,雷加强,曾凡江,等.绿洲化进程中不同利用强度农田对土壤质量的影响[J].生态学报,2010,30(7):1780-1788.
    [22] 韩春丽,刘梅,张旺锋,等.连作棉田土壤剖面钾含量变化特征及不同耕作方式的响应[J].中国农业科学,2010,43(14):2913-2922.
    [23] 曹良元,张磊,蒋先军,等.土壤硝化作用在团聚体中的分布以及耕作的影响[J].西南大学学报(自然科学版),2009,31(5):141-147.
    [24] Xin X P,Liu W,Jiang X J,et al.Distribution of nitrifiers and nitrification associated with different sizes of aggregates along a 2000 year chronosequence of rice cultivation[J].Catena,2014,119:71-77.
    [25] Haichar F E Z,Santaella C,Heulin,et al.Root exudates mediated interactions belowground[J].Soil Biology & Biochemistry,2014,77(7):69-80.
    [26] Gollany H T,Molina J A E,Clapp C E,et al.Nitrogen leaching and denitrification in continuous corn as related to residue management and nitrogen fertilization[J].Environmental Management,2004,33(1):S289-S298.
    [27] 邹国元,张福锁,陈新平,等.农田土壤硝化-反硝化作用于N2O的排放[J].土壤与环境,2001,10(4):273-276.
    [28] Yanai Y,Toyota K.Effects of soil freeze-thaw cycles on microbial biomass and organic matter decomposition,nitrification and denitrification potential of soils[J].Journal of Physics Condensed Matter,2006,19:4595-4611.
    [29] Zhu T B,Zhang J B,Yang W Y,et al.Effects of organic material amendment and water content on NO,N2O,and N2 emissions in a nitrate-rich vegetable soil[J].Biol Fertil Soils,2013,49(2):153-163.
    [30] 徐万里,唐光木,盛建东,等.垦殖对新疆绿洲农田土壤有机碳组分及团聚体稳定性的影响[J].生态学报,2010,30(7):1773-1779.
    [31] 韩春丽,刘娟,肖春华,等.新疆绿洲连作棉田土壤微量元素含量的时空变化研究[J].土壤学报,2010,47(6):1194-1201.
    [32] 贡璐,张海峰,吕光辉,等.塔里木河上游典型绿洲不同连作年限棉田土壤质量评价[J].生态学报,2011,31(14):4136-4143.
    [33] Billy C,Billen G,Sebilo M,et al.Nitrogen isotopic composition of leached nitrate and soil organic matter as an indicator of denitrification in a sloping drained agricultural plot and adjacent uncultivated riparian buffer strips[J].Soil Biology & Biochemistry,2010,42(1):108-117.
    [34] Rachid C T C C,Balieiro F C,Peixoto R S,et al.Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes[J].Soil Biology & Biochemistry,2013,66(11):146-153.
    [35] Bryla D R,Rui M A M.Comparative effects of nitrogen fertigation and granular fertilizer application on growth and availability of soil nitrogen during establishment of highbush blueberry[J].Frontiers in Plant Science,2011,2(12):46.
    [36] ChapinⅢ F S,Matson P A,Mooney H A,et al.Translation.Principles of terrestrial ecosystem ecology[M].Beijing:Higher education press,2005:266-285.
    [37] Rohe L,Anderson T-H,Braker G,et al.Fungal oxygen exchange between denitrification intermediates and water[J].Rapid Commun Mass Spectrom,2014,28(4):377-384.
    [38] ?imek M,Cooper J E.The influence of soil pH on denitrification progress towards the understanding of this inteeraction over the last 50 years[J].European Journal of Soil Science,2005,53(3):345-354.
    [39] Philippot L,Hallin S,Schloter M.Ecology of denitrifying prokaryotes in agricultural soil[J].Advances in Agronomy,2007,96:249-305.
    [40] Pathak H,Rao D L N.Carbon and nitrogen mineralization form added organic matter in saline and alkali soil[J].Soil Biology & Biochemistry,1998,30(6):695-702.
    [41] 徐万里,张云舒,刘骅.新疆盐渍化土壤氮肥氨挥发损失特征初步研究[J].生态环境,2007,16(1):176-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700