用户名: 密码: 验证码:
激光功率密度对相同曝光量下氧化石墨烯还原的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Laser Power Density on Reduction of Graphene Oxide under the Same Exposure
  • 作者:谢磊 ; 雷小华 ; 谭小刚 ; 刘显明 ; 邓益俊 ; 陈伟民
  • 英文作者:XIE Lei;LEI Xiao-hua;TAN Xiao-gang;LIU Xian-ming;DENG Yi-jun;CHEN Wei-min;Key Laboratory of Optoelectronic Technology and Systems,Ministry of Education,College of Opto-electronic Engineering,Chongqing University;
  • 关键词:碳纳米材料 ; 激光功率密度 ; 光照还原 ; 氧化石墨烯 ; 透过率 ; 电阻率
  • 英文关键词:Carbon nanomaterial;;Laser power density;;Light reduction;;Graphene oxide;;Transmittance;;Resistivity
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:重庆大学光电工程学院光电技术及系统教育部重点实验室;
  • 出版日期:2019-05-22 13:38
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:The National Natural Science Foundation of China(No.61405019);; Chongqing Basic and Frontier Research Project(No.cstc2014jcyjA50023)
  • 语种:英文;
  • 页:GZXB201905002
  • 页数:8
  • CN:05
  • ISSN:61-1235/O4
  • 分类号:7-14
摘要
采用488nm连续激光在相同曝光量条件下对氧化石墨烯样品进行光照还原实验,并通过透射率和电阻率来表征还原氧化石墨烯的性质.结果表明:在还原过程中,通过透过率和电阻率表征的还原程度呈现相同的变化趋势.此外,还原过程分为两个步骤:达到相对稳定状态之前和达到相对稳定状态.在达到相对稳定状态之前,激光功率密度越低,样品的还原程度越高;但当达到相对稳定的状态后,激光功率密度越高,样品的还原程度越高.基于rGO中含氧官能团的变化,通过光子穿透能力和光对rGO的带隙调制作用对这一现象进行了分析.
        Light reduction experiments were carried out with a 488 nm continuous laser under the same exposure.Simultaneously the properties of reduced graphene oxide(rGO)were characterized by transmittance and resistivity.The results show that during the reduction process,the degree of reduction characterized by resistivity and transmittance presents the same trend.Moreover,the reduction process is divided into two steps:before reaching the relatively stable state and reaching the relatively stable state.Before reaching the relatively stable state,the lower the laser power density,the higher the reduction degree of the samples;but when reaching the relatively stable state,the higher laser power density,the higher the reduction degree of the samples.This phenomenon is further analyzed by means of photon penetration and bandgap modulation,based on the change of oxygenated functional groups in rGO.
引文
[1] KUMAR R,DHAWAN S K,SINGH H K,et al.Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution[J].Materials Chemistry and Physics.2016,180:413-421.
    [2] MADDAHFAR M,RAMEZANI M,MOSTAFA HOSSEINPOUR-MASHKANI S.Barium hexaferrite/graphene oxide:controlled synthesis and characterization and investigation of its magnetic properties[J].Applied Physics A.2016,122(8):752.
    [3] GOUMRI M,VENTURINIJ W,BAKOUR A,et al.Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA[J].Applied Physics A.2016,122(3):212.
    [4] SCH?CHE S,HONG N,KHORASANINEJAD M,et al.Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry[J].Applied Surface Science.2017,421:778-782.
    [5] LOH K P,BAO Q,EDA G,et al.Graphene oxide as a chemically tunable platform for optical applications[J].Nature Chemistry.2010,2(12):1015-1024.
    [6] PARK S,LEE K S,BOZOKLU G,et al.Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking[J].Acs Nano.2008,2(3):572-578.
    [7] CHANG I L,CHEN J A.The molecular mechanics study on mechanical properties of graphene and graphite[J].Applied Physics A.2015,119(1):265-274.
    [8] ZHU Y,MURALI S,CAI W,et al.Graphene and graphene oxide:synthesis,properties,and applications[J].Advanced Materials.2010,22(46):3906-3924.
    [9] SHAHIL K M F,BALANDIN A A.Thermal properties of graphene and multilayer graphene:applications in thermal interface materials[J].Solid State Communications.2012,152(15):1331-1340.
    [10] SHEN H,SHI Y,WANG X.Synthesis,charge transport and device applications of graphene nanoribbons[J].Synthetic Metals.2015,210:109-122.
    [11] KIM H,AHN J H.Graphene for flexible and wearable device applications[J].Carbon.2017,120:244-257.
    [12] ZHANGY L,GUO L,XIA H,et al.Photoreduction of graphene oxides:methods,properties,and applications[J].Advanced Optical Materials.2014,2(1):10-28.
    [13] STANKOVICH S,DIKIN D A,PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon.2007,45(7):1558-1565.
    [14] LIN S,BUEHLER M J.Thermal transport in monolayer graphene oxide:Atomistic insights into phonon engineering through surface chemistry[J].Carbon.2014,77(77):351-359.
    [15] COTE L J,CRUZSILVA R,HUANG J.Flash reduction and patterning of graphite oxide and its polymer composite[J].Journal of the American Chemical Society.2009,131(31):11027-11032.
    [16] GILJE S,DUBIN S,BADAKHSHAN A,et al.Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications[J].Advanced Materials.2010,22(3):419-423.
    [17] LI Y C,YEH T F,HUANG H C,et al.Graphene oxide-based micropatterns via high-throughput multiphoton-induced reduction and ablation[J].Optics Express.2014,22(16):19726-19734.
    [18] PREZIOSO S,PERROZZI F,DONARELLI M,et al.Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction[J].Langmuir the Acs Journal of Surfaces&Colloids.2012,28(12):5489-5495.
    [19] HUMMERS W S,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society.1958,80(6):1339-1339.
    [20] KRISHNAMOORTHY K,VEERAPANDIAN M,MOHAN R,et al.Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets[J].Applied Physics A.2012,106(3):501-506.
    [21] LI B,ZHANG X,CHEN P,et al.Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide–Ag nanoparticles film[J].Rsc Advances.2013,4(5):2404-2408.
    [22] ZHOU S,BONGIORNO A.Origin of the chemical and kinetic stability of graphene oxide[J].Scientific Reports.2013,3(8):2484.
    [23] NOVOSELOV K S,FAL′KO V I,COLOMBO L,et al.A roadmap for graphene[J].Nature.2012,490(7419):192-200.
    [24] KIM K S,ZHAO Y,JANG H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature.2009,457(7230):706.
    [25] GUO L,SHAO R Q,ZHANG Y L,et al.Bandgap tailoring and synchronous microdevices patterning of graphene oxides[J].Physchemc.2012,116(5):3594-3599.
    [26] GUO L,JIANG H B,SHAO R Q,et al.Two-beam-laser interference mediated reduction,patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J].Carbon.2012,50(4):1667-1673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700