用户名: 密码: 验证码:
基于低空遥感地貌观测的逆断层陡坎研究:以张流沟滩断层陡坎为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A study on the scarp of reverse fault based on geomorphological observation by low-altitude remote sensing:taking the fault scarp of Zhangliugou Beach as an example
  • 作者:马金保 ; 张波 ; 王洋 ; 艾晟
  • 英文作者:MA Jinbao;ZHANG Bo;WANG Yang;AI Sheng;School of Earth and Space Sciences,Peking University;School of Earth Sciences and Engineering,Sun Yat-sen University;
  • 关键词:活动断裂 ; 数字地形数据 ; 断层陡坎地貌 ; 无人机低空遥感
  • 英文关键词:active faults;;digital terrain data;;the morphology of fault scarp;;UAV low-altitude remote sensing
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:北京大学地球与空间科学学院;中山大学地球科学与工程学院;
  • 出版日期:2019-02-27 11:29
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.136
  • 基金:国家公益性重大专项“中国地震活动断层探察——南北地震带北段”(201408023)
  • 语种:中文;
  • 页:DXQY201902011
  • 页数:12
  • CN:02
  • ISSN:11-3370/P
  • 分类号:96-107
摘要
活动断层相关地貌特征的定量研究是揭示古地震和断裂属性的重要依据,其中陡坎地貌是断裂活动的重要地貌响应,是有效识别活动断裂的重要地貌标志。近年来,无人机低空遥感观测技术的不断进步,使得高分辨率地貌数据的快速获取成为现实。本研究利用无人机低空遥感地貌观测技术,对张流沟滩处的断层陡坎附近进行高分辨率数字地形数据的采集。断层陡坎位于张流沟滩河流Ⅱ级阶地上,影像采集范围为800m×400m的矩形区域。经过一系列的影像处理,最终获取了目标区地面分辨率为0.1m的DEM(数字高程模型)数据。基于该DEM数据可以提取到正交于断层陡坎的高程、坡度剖面。利用高程剖面所展示的地形地貌信息,可以提取到陡坎高度为(2.81±0.05)m;利用坡度剖面所展示的坡度曲线特征,可以推断该陡坎至少经历过两次断错活动事件,并且陡坎存在向上"凸起样式"。通过探槽解译,确定该陡坎下伏断裂至少发生过两次活动事件,其中较早的地震事件接近(3.68±0.14)ka B.P.,最晚期的地震活动应为1927年古浪8级地震,两次断裂活动累计垂直位移为(2.80±0.2)m。将以上两种研究方法相比较可以发现,探槽结构分析与低空遥感获取的定量化地貌信息分析结果基本一致,均能够有效揭示古地震期次及累计的同震位移量。最终本研究将探槽揭示的地层单元的沉积、构造信息与陡坎坡度数据特征相结合,提出了基于断层传播褶皱模型的"陡坎凸起"地貌响应样式来解释陡坎存在的向上"凸起样式"。实践证明,利用无人机低空遥感地貌观测技术能够定量、半定量化揭示下伏断裂的活动信息,结合传统断裂研究手段,可以更全面解释活动断层的沉积、构造特征及地形、地貌现象。总的来说,无人机低空遥感地貌观测技术的应用可作为传统古地震研究的辅助手段,并有其独特的方法优势。
        The quantitative study of geomorphic features associated with active faults is important for revealing paleoseismic and fracture characteristics.Faulting associated morphology,namely fault scarp,is an important geomorphological response to fault activity;therefore,it is a good geomorphic mark for effectively identifying active faults.In recent years,the rapid development of UAV low-altitude remote sensing technology has enabled rapid acquisition of high-resolution geomorphic data.In this study,we used UAV low-altitude remote sensing for geomorphologic observation to collect high-resolution digital terrain data near the fault scarp at Zhangliugou Beach.The fault scarp is located on a Class II terrace,covering a rectangular area of 800 m×400 mfor imaging acquisition.After a series of imaging processing,we finally acquired DEM(digital elevation model)data with a ground resolution of 0.1 min the target area.Based on this DEM data,elevation and slope profiles orthogonal to the fault scarp can be extracted.Using the topographic information displayed in the elevation profiles,the height of the fault scarp was determined to be 2.81±0.05 m.The slope curve feature from the slope profiles inferred that the scarp experienced at least two fault-off activity events,and the fault scarp has an upward"bulge style".Through trench interpretation,we also determined that at least two active events occurred at the lower fault scarp:the earlier seismic event was close to 3.68±0.14 ka B.P.,and the 1927 magnitude 8 earthquake was the latest activity.The cumulative vertical displacement of the two fracturing activities was 2.80±0.2 m.Comparing the above two research methods,we found that the trench structure analysis yielded basically the same quantitative geomorphological information as that obtained from the low-altitude remote sensing technology,both could effectively reveal the paleoseismic period and cumulative co-seismic displacement.Finally,by considering both sedimentary/structural information of strata units in the trench and slope profile features,we proposed the"scarp bulge"geomorphological response pattern based on the fault-propagation folds model to explain the occurrence of the upward"bulge style"of scarp.Experimental results proved that technology using UAV low-altitude remote sensing for geomorphologic observation can quantitatively or semi-quantitatively reveal the activity information of the underlying fault of scarp.When it is combined with traditional fracture research methods,this technology can more fully explain depositional and structural features as well as topography and geomorphology of active faults.And it can be used,in general,as an auxiliary method in traditional paleoseismic research for its unique methodological advantages.
引文
[1]陈涛,张培震,刘静,等.机载激光雷达技术与海原断裂带的精细地貌定量化研究[J].科学通报,2014,59(14):1293-1304.
    [2]ARROWSNMITH J R,ZIELKE O.Tectonic geomorphology of the San Andreas fault zone from high resolution topography:an example from the Cholame segment[J].Geomorphology,2009,113(1/2):70-81.
    [3]LIN Z,KANEDA H,MUKOYAMA S,et al.Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J].Geomorphology,2013,182:104-15.
    [4]FORMAN S L,NELSON A R,MCCALPIN J P.Thermoluminescence dating of fault-scarp-derived colluvium:deciphering the timing of paleoearthquakes on the Weber Segment of the Wasatch fault zone,north central Utah[J].Journal of Geophysical Research:Solid Earth,1991,96(B1):595-605.
    [5]WIGNALL P B,PICKERING K T.Palaeoecology and sedimentology across a Jurassic fault scarp,NE Scotland[J].Journal of the Geological Society,1993,50(2):323-40.
    [6]张裕明.可可托海-二台断层陡坎的坡角变化、年龄和大地震重复时间间隔[J].中国地震,1986(1):67-74.
    [7]冉勇康,陈立春,陈文山,等.中国大陆古地震研究的关键技术与案例解析(2):汶川地震地表变形特征与褶皱逆断层古地震识别[J].地震地质,2012,34(3):385-400.
    [8]SUPPE J.Geometry and kinematics of fault-bend folding[J].American Journal of Science,1983,283(7):684-721.
    [9]JAMISON W R.Geometric analysis of fold development in overthrust terranes[J].Journal of Structural Geology,1987,9(2):207-219.
    [10]WALLACE R E.Profiles and ages of young fault scarps,north-central Nevada[J].Geological Society of America Bulletin,1977,88(9):1267-1281.
    [11]CARSON M A.Angles of repose,angles of shearing resistance and angles of talus slopes[J].Earth Surface Processes and Landforms,1977,2(4):363-380.
    [12]CARRETIER S,RITZ J F,JACKSON J,et al.Morphological dating of cumulative reverse fault scarps:examples from the Gurvan Bogd fault system,Mongolia[J].Geophysical Journal International,2002,148(2):256-277.
    [13]NIVIERE B,MARQUIS G,MAURIN J C.Morphologic dating of slowly evolving scarps using a diffusive analogue[J].Geophysical Research Letters,1998,25(13):2325-2328.
    [14]MEGHRAOUI M,PHILIP H,ALBAREDE F,et al.Trench investigations through the trace of the 1980El Asnam thrust fault:evidence for paleoseismicity[J].Bulletin of the Seismological Society of America,1988,78(2):979-999.
    [15]SWAN F H.Temporal clustering of paleoseismic events on the Oued Fodda fault,Algeria[J].Geology,1988,16(12):1092-1095.
    [16]PHILIP H,ROGOZHIN E,CISTERNAS A,et al.The Armenian earthquake of 1988 December 7:faulting and folding,neotectonics and palaeoseismicity[J].Geophysical Journal International,1992,110(1):141-158.
    [17]YEATS R S,SIEH K,ALLEN C R.The geology of earthquakes[M].Oxford,USA:Oxford University Press,1997:352.
    [18]陈杰,童小华,刘向锋,等.黑河流域中游无人机遥感影像数据处理[J].地理信息世界,2014,21(1):63-67.
    [19]VAN BLYENBURGH P.UAVs:an overview[J].Air and Space Europe,1999,1(5/6):43-7.
    [20]艾晟,张波,樊春,王洋.武威盆地南缘断裂晚第四纪活动地表形迹与活动速率[J].地震地质,2017,39(2):408-422.
    [21]刘百篪,吕太乙,袁道阳,等.祁连山活动断裂东段(老虎山、毛毛山和金强河断裂)地质填图(1∶5万)说明书[M].北京:地震出版社,2013.
    [22]国家地震局地质研究所,国家地震局兰州地震研究所.祁连山-河西走廊活动断裂系[M].北京:地质出版社,1993:148-174.
    [23]刘小凤,刘百篪,杨立明.祁连山东段三维构造物理模型及其在地震预报中的应用[J].西北地震学报,2000,22(2):110-117.
    [24]田勤俭,丁国瑜,申旭辉.青藏高原东北隅强震构造模型[J].地震,2002(1):9-16.
    [25]侯康明.1927年古浪8级大震的发震构造条件形成机制及区域动力学环境研究[D].北京:国家地震局地质研究所,1996.
    [26]刘洪春,贾云鸿,陈永明,等.1927年古浪8级地震地表破裂带研究[M]∥活动断裂研究(4).北京:地震出版社,1995:79-91.
    [27]刘洪春,贾云鸿,苏向洲,等.皇城-双塔活动断裂分段及不均匀性研究[M]∥活动断裂研究(5).北京:地震出版社,1996:87-94.
    [28]贾云鸿,苏向洲,刘洪春,等.皇城-双塔断裂东段(祁连-双塔段)晚更新世以来的活动特征[M]∥活动断裂研究(3).北京:地震出版社,1994:170-179.
    [29]GAUDEMER Y,TAPPONNIER P,MEYER B,et al.Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,‘the Tianzhu gap’,on the western Haiyuan Fault,Gansu(China)[J].Geophysical Journal International,1995,120(3):599-645.
    [30]侯康明,邓起东,刘百篪.冬青顶活动背斜的变形样式、变形幅度及形成机理[M]∥活动断裂研究(6).北京:地震出版社,1997:88-96.
    [31]郑文俊,袁道阳,张东丽,等.1927年古浪8级地震的破裂习性及破裂机制的数值模拟[J].中国地震,2004,20(4):353-363.
    [32]郑文俊,袁道阳,何文贵.皇城-双塔断裂冬青顶段古地震活动规律的初步研究[J].地震研究,2004,27(1):66-73.
    [33]Google Earch.武威盆地南缘断裂张流沟滩处卫星图片[CM/OL].(2015-07-07)[2017-12-25].http:∥www.google.com/intl/zh-CN/earth/.
    [34]NINO F,PHILIP H,CHERY J.The role of bed-parallel slip in the formation of blind thrust faults[J].Journal of Structural Geology,1998,20(5):503-16.
    [35]STEIN R S,YEATS R S.Hidden earthquakes[J].Scientific American,1989,260(6):48-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700