用户名: 密码: 验证码:
垃圾焚烧飞灰水洗液纯化及无机盐分离
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Purification and inorganic salts separation of waste incineration fly ash water washing solution
  • 作者:范庆玲 ; 郭小甫 ; 袁俊生
  • 英文作者:Fan Qingling;Guo Xiaofu;Yuan Junsheng;School of Chemical Engineering,Hebei University of Technology;Engineering Research Center of Seawater Utilization Technology,Ministry of Education;Quanzhou Normal University;
  • 关键词:垃圾焚烧飞灰水洗液 ; 重金属去除 ; 蒸发分离 ; 无机盐
  • 英文关键词:waste incineration fly ash water washing solution;;removal of heavy metals;;evaporation separation;;inorganic salt
  • 中文刊名:WJYG
  • 英文刊名:Inorganic Chemicals Industry
  • 机构:河北工业大学化工学院;海水资源高效利用化工技术教育部工程研究中心;泉州师范学院;
  • 出版日期:2019-03-11 11:28
  • 出版单位:无机盐工业
  • 年:2019
  • 期:v.51;No.364
  • 基金:国家重点研发计划项目课题(2016YFB0600504);; 福建省产业技术联合创新项目(闽发改投资[2015]489号)
  • 语种:中文;
  • 页:WJYG201903017
  • 页数:6
  • CN:03
  • ISSN:12-1069/TQ
  • 分类号:73-77+82
摘要
使用沉淀剂对垃圾焚烧飞灰水洗液中的重金属进行去除实验,并对去除重金属后水洗液中的无机盐进行分离回收。考察了无机、有机沉淀剂单独使用以及无机-有机沉淀剂联用对水洗液中重金属的去除效果,对纯化后的水洗液进行蒸发结晶分离,对不同沸点温度分离得到的无机盐的纯度进行分析。结果表明,无机沉淀剂碳酸钠与硫化钠相比硫化钠去除重金属的效果较好,在硫化钠与重金属物质的量比为1.5时重金属的总去除率可达89.02%;有机沉淀剂TMT-102、MT-103、RS-2568中去除重金属效果最好的是MT-103,在其添加量为400 mg/L时重金属的总去除率可达99.49%。将无机-有机沉淀剂联用,先以硫化钠与重金属物质的量比为1.5加入硫化钠,再加入40 mg/L的MT-103,飞灰水洗液中重金属的总去除率可高达99.60%。将纯化后的水洗液中的无机氯盐进行蒸发分离,蒸发沸点为114℃时一次蒸发结束,分离后的盐浆在不低于80℃条件下洗涤提纯,得到氯化钠的纯度在95%以上;将母液继续蒸发至沸点温度为126℃,然后降温结晶,粗钾按照液固质量比为1.5进行水洗,得到氯化钾的纯度在96%以上;最后的氯化钙母液蒸发至134℃,然后降温结晶,可得六水合氯化钙。
        The heavy metals were removed by using different precipitating agents from waste incineration fly ash water washing solution.Separation and recovery of inorganic salts in water washing solution after heavy metal removal were also carried out.The effects of types,additions of the inorganic and organic precipitants,and the combination of inorganic and organic precipitant on the removal rate of the heavy metals were investigated.After purification,the washing liquid was evaporated and crystallized,and the purities of the inorganic salts separated at different boiling temperatures were analyzed.The experimental results showed that the removal efficiency of sodium sulfide was better than sodium carbonate,the total removal rate was89.02% when the amount of substance ratio of sodium sulfide to heavy metal was 1.5.In organic precipitants TMT-102,MT-103 and RS-2568,MT-103 had the best removal efficiency,the total removal rate of heavy metal was 99.49% when the optimum addition was 400 mg/L.When combining the inorganic and organic precipitants,added sodium sulfide according to amount of substance ratio of sodium sulfide to heavy metal of 1.5,and then added MT-103 at the optimum dosage of 40 mg/L.The total removal rate of heavy metals could reach 99.60%.The inorganic chlorine salt in the purified fly ash water washing liquid was evaporated and separated.The first evaporation separation ended at boiling point temperature of 114 ℃.The salt slurry was purified at the temperature of not less than 80 ℃,and the purity of NaCl was over 95%.The mother liquor was evaporated to the boiling point at 126 ℃ and then cooled down.After the solid-liquid separation,the crude potassium was washed at the liquid solid ratio of 1.5,and the purity of KCl was above 96%.The mother liquor of CaCl2 continued to evaporate,and when the temperature rose to 134 ℃,and the CaCl2·6 H2 O can be obtained by cooling crystallization.
引文
[1]蒋旭光,常威.生活垃圾焚烧飞灰的处置及应用概况[J].浙江工业大学学报,2015,43(1):7-11.
    [2] Bobiric觍C,Shim J H,Park J Y.Leaching behavior of fly ash-wasteglass and fly ash-slag-waste glass-based geopolymers[J].GeramicsInternational,2018,44(6):5886-5893.
    [3]靳美娟.城市生活垃圾焚烧飞灰水泥固化技术研究[J].环境工程学报,2016,10(6):3235-3241.
    [4]常威.生活垃圾焚烧飞灰的水洗及资源化研究[D].浙江:浙江大学,2016.
    [5] Zhan G,Guo Z C.Water leaching kinetics and recovery of potassiumsalt from sintering dust[J].Transactions of Nonferrous Metals So-Society of China,2013,23(12):3770-3779.
    [6] Zhan G,Guo Z C.Basic properties of sintering dust from iron andsteel plant and potassium recovery[J].Journal of Environmental Sci-ences,2013,25(6):1226-1234.
    [7]张更宇,张冬冬.化学沉淀法处理电镀废液中重金属的实验研究[J].山东化工,2016,45(16):215-220.
    [8] Kenawy I M,Hafez M A H,Ismail M A,et al.Adsorption of Cu(Ⅱ),Cd(Ⅱ),Hg(Ⅱ),Pb(Ⅱ)and Zn(Ⅱ)from aqueous single metalsolutions by guanyl-modified cellulose[J].International Journal ofBiological Macromolecules,2018,107:1538-1549.
    [9]李学峰,朱蕾,高焕新,等.不同沸石吸附铅离子的对比研究[J].无机盐工业,2011,43(8):21-24.
    [10]胡栋梁,方亚平,温会涛,等.电渗析和反渗透耦合深度处理制革高盐废水的研究[J].水处理技术,2017,43(11):107-111.
    [11] Suthanthararajan R,Ravindranath E,Chits K,et al.Membrane app-lication for recovery and reuse of water from treated tannery waste-water[J].Desalination,2004,164(2):151-156.
    [12]雷兆武,孙颖.离子交换技术在重金属废水处理中的应用[J].环境科学与管理,2008,33(10):82-84.
    [13] Ya V,Martin N,Chou Y H,et al.Electrochemical treatment for si-multaneous removal of heavy metals and organics from surface fi-nishing wastewater using sacrificial iron anode[J].Journal of theTaiwan Institute of Chemical Engineers,2018,83:107-114.
    [14]凌永生,金宜英,聂永丰.焚烧飞灰水泥窑煅烧资源化水洗预处理实验研究[J].环境保护科学,2012,38(4):1-5.
    [15]白晶晶,闫大海,李丽,等.CO2去除垃圾焚烧飞灰水洗液中Pb和Zn的工艺条件[J].环境科学研究,2012,25(7):809-814.
    [16] Mangialardi T.Disposal of MSWI fly ash through a combined wash-ing-immobilisation process[J].Journal of Hazardous Materials,2003,98:225-240.
    [17] Djedidi Z,Bouda M,Souissi M A,et al.Metals removal from soil,flyash and sewage sludge leachates by precipitation and dewateringproperties of the generated sludge[J].Journal of Hazardous Mate-rials,2009,172:1372-1382.
    [18]王彦飞,杨静,王婧莹,等.煤化工高浓盐废水蒸发处理工艺进展[J].无机盐工业,2017,49(1):10-14.
    [19]韩大健,王文祥,孙水裕,等.城市生活垃圾焚烧飞灰中钾盐浸出研究[J].环境科学学报,2017,37(6):2223-2231.
    [20]张晓樵.生活垃圾焚烧飞灰毒性浸出规律及水洗预处理废水资源化处理探索[D].上海:上海大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700