用户名: 密码: 验证码:
显生宙全球海水化学成分演化及其对蒸发岩沉积的约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The chemical evolution of seawater during the Phanerozoic: Constriants on evaporites deposition
  • 作者:沈立建 ; 刘成林
  • 英文作者:SHEN LiJian;LIU ChengLin;MLR Key Laboratory Metallogeny and Mineral Resource Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences;Radiogenic Isotope Facility,School of Earth Sciences,The University of Queensland;
  • 关键词:显生宙 ; 海水成分 ; 流体包裹体 ; 海相钾盐矿床 ; 海相碳酸盐 ; 微量元素 ; 板块运动
  • 英文关键词:Phanerozoic;;Seawater composition;;Fluid inclusions;;Marine potash deposits;;Mairne carbonates;;Trace elements;;Plate tectonics
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室;昆士兰大学地球科学学院放射性同位素实验室;
  • 出版日期:2018-06-15
  • 出版单位:岩石学报
  • 年:2018
  • 期:v.34
  • 基金:国家重点基础研究发展计划项目(2011CB403000)资助
  • 语种:中文;
  • 页:YSXB201806018
  • 页数:16
  • CN:06
  • ISSN:11-1922/P
  • 分类号:283-298
摘要
通过搜集显生宙以来不同地质时期内海相碳酸盐岩鲕粒及胶结物矿物成分、钾盐矿床矿物种类及组合特征、蒸发岩盆地中石盐流体包裹体成分,并利用这些资料与人工海水模拟实验得到的石盐中Br分配特征的对比,得出海水成分在5.5亿年以来的显生宙期间,经历了五个阶段:其中晚元古代至寒武纪早期、二叠纪早期至中生代早期、新生代早期至现今,这些时期的原始海水组成特征系数m(SO_4~(2-))+m(HCO_3~-)/2>m(Ca~(2+)),为Na-Mg-K-SO_4-Cl型海水,此期间沉积的钾盐矿床的钾镁盐矿物主要为钾盐镁矾、无水钾镁矾、杂卤石、硫酸镁石等含MgSO_4矿物,海相鲕粒和碳酸盐胶结物矿物成分为文石;而寒武纪早期至石炭纪、中生代早期至新生代早期,原始海水组成特征系数m(Ca~(2+))>m(SO_4~(2-))+m(HCO_3~-)/2<,为Na-Mg-KCa-Cl型海水,此期间沉积的钾镁盐矿物主要为光卤石和钾石盐,甚至含有溢晶石,海相鲕粒和碳酸盐胶结物矿物成分为方解石。根据石盐流体包裹体成分计算得出:显生宙期间,海水K+含量大部分时间变化幅度较小,为9.3~11.5mmol/kg H_2O(除了石炭纪和晚元古代),平均为10.55mmol/kg H_2O。Mg~(2+)含量在早寒武世≥67mmol/kg H_2O、晚志留世至中泥盆世31~41mmol/kg H_2O、晚古生代≥48mmol/kg H22O、晚白垩世34mmol/kg H_2O和现代55.1mmol/kg H_2O。Ca~+含量在晚元古代至古生代早期≤11mmol/kg H_2O、古生代早期至石炭纪22~35mmol/kg H_2O、石炭纪至中生代早期≤17mmol/kg H_2O、中生代早期至新生代早期19~39mmol/kg H_2O及新生代早期至今7~21mmol/kg H_2O。SO_4~(2-)含量在晚元古代至古生代早期≥23mmol/kg H_2O、古生代早期至石炭纪5~17mmol/kg H_2O、石炭纪至中生代早期13~22mmol/kg H_2O、中生代早期至新生代早期5~19mmol/kg H_2O及新生代早期至今12~29.2mmol/kg H_2O。海水Ca~(2+)与SO_4~(2-)含量的相对变化是控制海相钾盐矿床钾镁盐矿物类型的基本因素。同时,利用以上数据计算得到的显生宙各时期海水[m(Mg~(2+))+m(SO_4~(2-))]/[m(K~+)+m(Ca~(2+))]的变化与各时期海相蒸发岩系石盐层底部的Br含量变化具有同步性,进一步验证了显生宙期间海水成分是不断变化的,是约束海相蒸发岩钾盐矿物类型的主要因素。海水成分变化的控制因素为洋中脊热液和陆地水,其中洋中脊热液起主要作用,而控制这些因素变化的根本原因为板块构造运动。
        Information on the mineralogies of ooids and marine carbonate cements,minerals and their assemblages of potash deposits,brine compositions of primary fluid inclusions in marine halite during the Phanerozoic were collected,in addition,artificial seawater simulation experiment about the distribution of Br partition coefficient was studied. The integrated information indicate that the composition of seawater has undergone five stages during the past 550 million years: the seawater was Na-Mg-K-SO_4-Cl type from Late Proterozoic to Early Cambrian,Early Permian to Early Mesozoic,and Early Cenozoic to the present,with m( SO_4~(2-)) + m( HCO_3~-)/2 in excess of m( Ca~(2+)). The major potassium-magnesia minerals were MgSO_4-bearing minerals including kainite,langbeinite,polyhalite,kieserite,etc. and the dominant mineralogy of ooids and cements of carbonate was aragonite during these periods. The seawater was Na-Mg-K-Ca-Cl type during Early Cambrian to Carboniferous and Early Mesozoic to Early Cenozoic,with m( Ca~(2+)) in excess of m( SO_4~(2-)) + m( HCO_3~-)/2. Potassium-magnesia minerals in the potash deposits mainly consisted of sylvite and carnallite,even tachyhydrite,and the dominant mineralogy of ooids and marine carbonate cements was calcite during these periods. Based on the calculation from the compositions of marine halite fluid inclusions,during the Phanerozoic,the K+concentration has not changed much,ranging from 9. 3 to 11. 5 mmol/kg H_2O( excluding Carboniferous and Late Proterozoic),10. 55 mmol/kg H_2O in average. The Mg~(2+) concentrations were more than 67 mmol/kg H_2O during Early Cambrian,31 ~ 41 mmol/kg H_2O from Late Silurian to Middle Devonian,more than 48 mmol/kg H_2O during Late Paleozoic,34 mmol/kg H_2O during Late Cretaceous,and 55. 1 mmol/kg H_2O at present. The Ca~(2+)concentrations were less than 11 mmol/kg H_2O from Late Proterozoic to Early Paleozoic,22 ~ 35 mmol/kg H_2O from Early Paleozoic to Carboniferous,less than 17 mmol/kg H_2O from Carboniferous to Early Mesozoic,19 ~ 39 mmol/kg H_2O from Early Mesozoic to Early Cenozoic,and 7 ~ 21 mmol/kg H_2O from Early Cenozoic to the present. The SO_4~(2-) concentrations were more than23 mmol/kg H_2O from Late Proterozoic to Early Paleozoic,5 ~ 17 mmol/kg H_2O from Early Paleozoic to Carboniferous,13 ~ 22 mmol/kg H_2O from Carboniferous to Early Mesozoic,5 ~ 19 mmol/kg H_2O from Early Mesozoic to Early Cenozoic,12 ~ 29. 2 mmol/kg H_2O from Early Cenozoic to the present. The relative variation of concentrations of Ca~(2+) and SO_4~(2-) is the primary factor controlling the type of potassium-magnesia minerals in marine potash deposits. Meanwhile,the [m( Mg~(2+)) + m( SO_4~(2-)) ]/[m( K~+) + m( Ca~(2+)) ] ratios which were calculated from the compositions of primary fluid inclusions in marine halite,is consistent with that of Br contents of the basal halite in marine evaporite sequences from different geological times. All above further support the conclusion that the composition of seawater has undergone secular changes during the Phanerozoic,and has been the major controlling factor constraining the type of potassium-magnesia minerals in marine evaporites. The controlling factors of the variations of seawater compositions are hydrothermal fluids from Mid-Ocean ridge and continental waters,and the former plays a major role. The underlying cause for the factors controlling the variations of seawater is plate tectonics.
引文
Arvidson RS,Guidry MW and Mackenzie FT.2011.Dolomite controls on Phanerozoic seawater chemistry.Aquatic Geochemistry,17(4-5):735-747
    Ayora C,Garcia-Veigas J and Pueyo JJ.1994a.X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins.Geochimica et Cosmochimica Acta,58(1):43-55
    Ayora C,Garcia-Veigas J and Pueyo JJ.1994b.The chemical and hydrological evolution of an ancient potash-forming evaporite basin as constrained by mineral sequence,fluid inclusion composition,and numerical simulation.Geochimica et Cosmochimica Acta,58(16):3379-3394
    Baker PA and Kastner M.1981.Constraints on the formation of sedimentary dolomite.Science,213(4504):214-216
    Belmonte Y,Hirtz P and Wenger R.1965.The salt basins of the Gabon and the Congo(Brazzaville).In:Institute of Petroleum(ed.).Salt Basins around Africa.London:Institute of Petroleum,55-74
    Bergman NM,Lenton TM and Watson AJ.2004.COPSE:A new model of biogeochemical cycling over Phanerozoic time.American Journal of Science,304(5):397-437
    Berner RA.1990.Atmospheric carbon dioxide levels over Phanerozoic time.Science,249(4975):1382-1386
    Brady PV,Krumhansl JL and Papenguth HW.1996.Surface complexation clues to dolomite growth.Geochimica et Cosmochimica Acta,60(4):727-731
    Braitsch O.1971.Salt Deposits:Their Origin and Composition(Vol.4).New York:Springer,1-296
    Broecker WS.1971.A kinetic model for the chemical composition of sea water.Quaternary Research,1(2):188-207
    Burns SJ,Mckenzie JA and Vasconcelos C.2000.Dolomite formation and biogeochemical cycles in the Phanerozoic.Sedimentology,47(S1):49-61
    Burton EA and Walter LM.1987.Relative precipitation rates of aragonite and Mg calcite from seawater:Temperature or carbonate ion control?Geology,15(2):111-114
    Canals A,Carpenter B,Huc AY,Guilhaumou N and Ramsey MH.1993.Microanalysis of primary fluid inclusions in halite:Constraints for an evaporitic sedimentation modeling.Application to the Mulhouse Basin(France).Organic Geochemistry,20(8):1139-1151
    Chester R.2000.Marine Geochemistry.Oxford:Blackwell Science,1-506
    Coggon RM,Teagle DAH,Smith-Duque CE,Alt JC and Cooper MJ.2010.Reconstructing past seawater Mg/Ca and Sr/Ca from midocean ridge flank calcium carbonate veins.Science,327(5969):1114-1117
    Damian NR,Worsley TR and Moody JB.1986.Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes.Geology,14(6):514-518
    Das N,Horita J and Holland HD.1990.Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin:Implications for Late Silurian seawater and the origin of sedimentary brines.Geochimica et Cosmochimica Acta,54(2):319-327
    De Ruiter PAC.1979.The Gabon and Congo basins salt deposits.Economic Geology,74(2):419-431
    Demicco RV,Lowenstein TK,Hardie LA and Spencer RJ.2005.Model of seawater composition for the Phanerozoic.Geology,33(11):877-880
    Edmond JM,Measures C,Mc Duff RE,Chan LH,Collier R,Grant B,Gordon LI and Corliss JB.1979.Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean:The Galapagos data.Earth and Planetary Science Letters,46(1):1-18
    Fanlo I and Ayora C.1998.The evolution of the Lorraine evaporite basin:Implications for the chemical and isotope composition of the Triassic ocean.Chemical Geology,146(3-4):135-154
    Gaffin S.1987.Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change.American Journal of Science,287(6):596-611
    Galamay AR and Karoli S.1997.Geochemistry of the Badenian salts from the East Slovakian Basin,Slovakia.Slovak Geological Magazine,3:187-192
    Galamay AR,Bukowski K and Przybylo J.1997.Chemical composition and origin of brines in the Badenian evaporite basin of the Carpathian Foredeep:Fluid inclusions data from Wieliczka(Poland).Slovak Geological Magazine,3:165-171
    García-Veigas J,Orti F,Rosell L,Ayora C,Rouchy JM and Lugli S.1995.The Messinian salt of the Mediterranean:Geochemical study of the salt from the Central Sicily Basin and comparison with the Lorca Basin,Spain.Bulletin de la Societe Geologique de France,166(6):699-710
    García-Veigas J,Rossel L and Garlicki A.1997.Petrology and geochemistry(fluid inclusions)of Miocene halite rock salts(Badenian,Poland).Slovak Geological Magazine,3(3):181-186
    Garrett DE.1996.Potash:Deposits,Processing,Properties and Uses.London:Chapman&Hall,1-734
    Given RK and Wilkinson BH.1987.Dolomite abundance and stratigraphic age:Constraints on rates and mechanisms of Phanerozoic dolostone formation.Journal of Sedimentary Research,57(6):1068-1078
    Hardie LA and Eugster HP.1970.The evolution of closed basin brines.Mineralogical Society of America Special Paper,3:273-290
    Hardie LA.1984.Evaporites:Marine or non-marine?American Journal of Science,284(3):193-240
    Hardie LA.1990.The roles of rifting and hydrothermal Ca Cl2brines in the origin of potash evaporates:An hypothesis.American Journal of Science,290(1):43-106
    Hardie LA.1996.Secular variation in seawater chemistry:An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600m.y.Geology,24(3):279-283
    Herrmann AG,Rühe S and Usdowski E.1997.Fluid Inclusions:Neue erkenntnisseüber den stoffbestand Na Cl-ges?ttigter meerwasserl?sungen im zechstein 3.Kali Steinsalz,12(4):115-124
    Hite RJ and Japakasetr T.1979.Potash deposits of the Khorat plateau,Thailand and Laos.Economic Geology,74(2):448-458
    Hite RJ.1985.The sulfate problem in marine evaporites.In:Proceeding of the 6thInternational Symposium on Salt.Toronto:Alexandria,Salt Institute,217-230
    Holland HD.1972.The geologic history of sea water:An attempt to solve the problem.Geochimica et Cosmochimica Acta,36(6):637-651
    Holland HD.1984.The Chemical Evolution of the Atmosphere and Oceans.Princeton:Princeton University Press,1-582
    Holland HD,Lazar B and Mc Caffrey M.1986.Evolution of the atmosphere and oceans.Nature,320(6057):27-33
    Holland HD,Horita J and Seyfried WE.1996.On the secular variations in the composition of Phanerozoic marine potash evaporites.Geology,24(11):91-92
    Holt NM,García-Veigas J,Lowenstein TK,Giles PS and Williams-Stroud S.2014.The major-ion composition of Carboniferous seawater.Geochimica et Cosmochimica Acta,134:317-334
    Horita J,Friedman TJ,Lazar B and Holland HD.1991.The composition of Permian seawater.Geochimica et Cosmochimica Acta,55(2):417-432
    Horita J,Weinberg A,Das N and Holland HD.1996.Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporites of western Canada.Journal of Sedimentary Research,66(5):956-964
    Horita J,Zimmermann H and Holland HD.2002.Chemical evolution of seawater during the Phanerozoic:Implications from the record of marine evaporites.Geochimica et Cosmochimica Acta,66(21):3733-3756
    Khmelevska EV.1997.Upper Jurassic evaporites of the southwestern slope of East European Platform.Slovak Geological Magazine,3(3):213-216
    Kitano Y,Park K and Hood DW.1962.Pure aragonite synthesis.Journal of Geophysical Research,67(12):4873-4874
    Kovalevich VM.1988.Phanerozoic evolution of ocean water composition.Geochemistry International,25(6):20-27
    Kovalevich VM and Petrichenko OI.1997.Chemical composition of brines in Miocene evaporite basins of Carpathian region.Slovak Geological Magazine,3:173-180
    Kovalevich VM,Jarmolowicz Szulc K,Peryt TM and Poberegski AV.1997.Messinian chevron halite from the Red Sea(DSDP Sites 225and 227):Fluid inclusion study.Neues Jahrbuch fur MineralogieMonatshefte,(10):433-450
    Kovalevich VM,Peryt TM and Petrichenko OI.1998.Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite.The Journal of Geology,106(6):695-712
    Kovalevych VM and Hauber L.2000.Fluid inclusions in halite from the Middle Triassic salt deposits in northern Switzerland:Evidence for seawater chemistry.In:Proceedings of the 8thWorld Salt Symposium.Amsterdam,New York:Elsevier,1:143-148
    Kovalevych VM,Marshall T,Peryt TM,Petrychenko OY and Zhukova SA.2006a.Chemical composition of seawater in Neoproterozoic:Results of fluid inclusion study of halite from Salt Range(Pakistan)and Amadeus Basin(Australia).Precambrian Research,144(1-2):39-51
    Kovalevych VM,Peryt TM,Zang WL and Vovnyuk SV.2006b.Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician,Canning Basin,Western Australia:New data on seawater chemistry.Terra Nova,18(2):95-103
    Kühn R.1968.Geochemistry of the German potash deposits.The Geological Society of America,Special Paper,88:427-504
    Land LS,Eustice RA,Mack LE and Horita J.1995.Reactivity of evaporites during burial:An example from the Jurassic of Alabama.Geochimica et Cosmochimica Acta,59(18):3765-3778
    Larson RL.1991.Latest pulse of Earth:Evidence for a Mid-Cretaceous superplume.Geology,19(6):547-550
    Lasaga AC.1989.A new approach to isotopic modeling of the variation of atmospheric oxygen through the Phanerozoic.American Journal of Science,289(4):411-435
    Lazar B and Holland HD.1988.The analysis of fluid inclusions in halite.Geochimica et Cosmochimica Acta,52(2):485-490
    Li YW,Cai KQ and Han WT.1998.Origin of potassium riched brine and the metamorphism of Triassic evaporites in Sichuan basin.Geoscience,12(2):222-228(in Chinese with English abstract)
    Lindh TB.1983.Temporal variations in13C,34S and global sedimentation during the Phanerozoic.Master Degree Thesis.Miami:University of Miami
    Lowenstein TK,Spencer RJ and Pengxi Z.1989.Origin of ancient potash evaporites:Clues from the modem nonmarine Qaidam Basin of western China.Science,245(4922):1090-1092
    Lowenstein TK,Timofeeff MN,Brennan ST,Hardie LA and Demicco RV.2001.Oscillations in Phanerozoic seawater chemistry:Evidence from fluid inclusions.Science,294(5544):1086-1088
    Lowenstein TK,Hardie LA,Timofeeff MN and Demicco RV.2003.Secular variation in seawater chemistry and the origin of calcium chloride basinal brines.Geology,31(10):857-860
    Lowenstein TK,Timofeeff MN,Kovalevych VM and Horita J.2005.The major-ion composition of Permian seawater.Geochimica et Cosmochimica Acta,69(7):1701-1719
    Mackenzie FT and Garrels RM.1966.Chemical mass balance between rivers and oceans.American Journal of Science,264(7):507-525
    Mackenzie FT and Pigott JD.1981.Tectonic controls of Phanerozoic sedimentary rock cycling.Journal of the Geological Society,138(2):183-196
    Maynard JB.1976.The long-term buffering of the oceans.Geochimica et Cosmochimica Acta,40(12):1523-1532
    Meng FW,Liu CL and Ni P.2012.To forecast sylvite deposits using the chemistry of fluid inclusions in halite.Acta Micropalaeontologica Sinica,29(1):62-69(in Chinese with English abstract)
    Morse JW,Wang QW and Tsio MY.1997.Influences of temperature and Mg∶Ca ratio on Ca CO3precipitates from seawater.Geology,25(1):85-87
    Nance RD,Murphy JB and Santosh M.2014.The supercontinent cycle:A retrospective essay.Gondwana Research,25(1):4-29
    Peryt TM and Kovalevich VM.1996.Origin of anhydrite pseudomorphs after gypsum crystals in the Oldest Halite(Werra,Upper Permian,northern Poland).Zentralblatt für Geologie und Pal?ontologie,Teil I,337-356
    Petrichenko OI.1973.Methods of study of inclusions in minerals of saline deposits,Naukova Dumka,Kiev.In:Fluid Inclusions Res.Ann Arbor:University of Michigan Press,12:214-274
    Pigott J,Schoonmaker J and Mac Kenzie FT.1980.Phanerozoic carbonate diagenesis:A new model.Abstract.AAPG Bulletin,64(5):764-765
    Qian ZQ,Qu YH and Liu Q.1994.Potash Deposits.Beijing:Geological Publishing House,1-273(in Chinese)
    Ridgwell A and Zeebe RE.2005.The role of the global carbonate cycle in the regulation and evolution of the Earth system.Earth and Planetary Science Letters,234(3-4):299-315
    Rubey WW.1951.Geologic history of sea water:An attempt to state the problem.GSA Bulletin,62(9):1111-1148
    Sandberg PA.1975.New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy.Sedimentology,22(4):497-537
    Sandberg PA.1983.An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy.Nature,305(5929):19-22
    Sandberg PA.1985.Nonskeletal aragonite and p CO2in the Phanerozoic and Proterozoic.In:Sundquist ET and Broecker WS(eds.).The Carbon Cycle and Atmospheric CO2:Natural Variations Archean to Present.Washington D.C:American Geophysical Union,Geophysical Monograph Series,32:585-594
    Shen LJ,Liu CL,Wang LC,Hu YF,Hu MY and Feng YX.2017.Degree of brine evaporation and origin of the Mengyejing potash deposit:Evidence from fluid inclusions in halite.Acta Geologica Sinica,91(1):175-185
    Shepherd TJ and Chenery SR.1995.Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study.Geochimica et Cosmochimica Acta,59(19):3997-4007
    Siemann MG.2003.Extensive and rapid changes in seawater chemistry during the Phanerozoic:Evidence from Br contents in basal halite.Terra Nova,15(4):243-248
    Sillén LG.1967.The ocean as a chemical system.Science,156(3779):1189-1197
    Spencer RJ and Hardie LA.1990.Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines.In:Spencer RJ and Chou MM(eds.).Fluid-mineral Interactions:ATribute to H.P.Eugster.Geochemical Society Special Publication,19:409-419
    Steuber T and Veizer J.2002.Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation.Geology,30(12):1123-1126
    Sun XH,Hu YF,Liu CL,Ding T,Hu MY,Zhao YJ and Wang MQ.2016.Argument that brine of salty lake in Sichuan Basin had reached crystallizing point of potash minerals during Triassic:Evidence from chemical composition of fluid inclusions in halite.Mineral Deposits,35(6):1157-1168(in Chinese with English abstract)
    Timofeeff MN,Lowenstein TK,Brennan ST,Demicco RV,Zimmermann H,Horita J and Von Borstel LE.2001.Evaluating seawater chemistry from fluid inclusions in halite:Examples from modern marine and nonmarine environments.Geochimica et Cosmochimica Acta,65(14):2293-2300
    Timofeeff MN,Lowenstein TK,Da Silva MAM and Harris NB.2006.Secular variation in the major-ion chemistry of seawater:Evidence from fluid inclusions in Cretaceous halites.Geochimica et Cosmochimica Acta,70(8):1977-1994
    Van Houten FB and Bhattacharyya DP.1982.Phanerozoic oolitic ironstones-geologic record and facies mode.Annual Review of Earth and Planetary Sciences,10:441-457
    Veizer J.1989.Strontium isotopes in seawater through time.Annual Review of Earth and Planetary Sciences,17:141-167
    Walker JCG.1986.Global geochemical cycles of carbon,sulfur and oxygen.Marine Geology,70(1-2):159-174
    Wallmann K.2004.Impact of atmospheric CO2and galactic cosmic radiation on Phanerozoic climate change and the marineδ18O record.Geochemistry,Geophysics,Geosystems,5(6):Q06004
    Wardlaw NC.1972.Unusual marine evaporites with salts of calcium and magnesium chloride in Cretaceous basins of Sergipe,Brazil.Economic Geology,67(2):156-168
    Warren JK.2010.Evaporites through time:Tectonic,climatic and eustatic controls in marine and nonmarine deposits.Earth-Science Reviews,98(3-4):217-268
    Wilkinson BH.1979.Biomineralization,paleoceanography,and the evolution of calcareous marine organisms.Geology,7(11):524-527
    Wilkinson BH,Owen RM and Carroll AR.1985.Submarine hydrothermal weathering,global eustasy,and carbonate polymorphism in Phanerozoic marine oolites.Journal of Sedimentary Research,55(2):171-183
    Wilkinson BH and Given RK.1986.Secular variation in abiotic marine carbonates:Constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios.The Journal of Geology,94(3):321-333
    Wilkinson BH and Algeo TJ.1989.Sedimentary carbonate record of calcium-magnesium cycling.American Journal of Science,289(10):1158-1194
    Worsley TR,Nance RD and Moody JB.1986.Tectonic cycles and the history of the Earth's biogeochemical and paleoceanographic record.Paleoceanography and Paleoclimatology,1(3):233-263
    Yang QX and Li J.1993.First discovery of sylvite mineral in the Majiagou Formation of Ordovician age in North Shaanxi Province.Geology of Chemical Minerals,15(4):223-227(in Chinese with English abstract)
    Zimmermann H.2000.The evolution of seawater during the past 40Ma:Evidence from the mineralogy of marine evaporites and fluid inclusions in marine halite.Ph.D.Dissertation.Habilitationsschrift:Universitt G9ttingen
    李亚文,蔡克勤,韩蔚田.1998.四川盆地三叠系蒸发岩的变质作用与富钾卤水的成因.现代地质,12(2):222-228
    孟凡巍,刘成林,倪培.2012.全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨.微体古生物学报,29(1):62-69
    钱自强,曲一华,刘群.1994.钾盐矿床.北京:地质出版社,1-273
    孙小虹,胡宇飞,刘成林,丁婷,胡明月,赵艳军,汪明泉.2016.四川盆地三叠纪古盐湖已达钾石盐析出阶段---来自石盐流体包裹体化学组成的约束.矿床地质,35(6):1157-1168
    杨全喜,李江.1993.陕北奥陶系首次发现钾石盐.化工地质,15(4):223-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700