用户名: 密码: 验证码:
基于暴雨洪水管理模型的低影响开发设施应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Storm water management model-based study on application of low impact development facilities
  • 作者:郑志宏 ; 段晓涵 ; 赵飞
  • 英文作者:ZHENG Zhihong;DUAN Xiaohan;ZHAOFei;Henan Vocational College of Water Conservancy and Environment;School of Environmental and Municipal Engineering,North China University of Water Resources and Electric Power;Beijing Water Science and Technology Institute;
  • 关键词:海绵城市 ; 低影响开发 ; 暴雨洪水管理模型 ; 雨水径流 ; 城市内涝防治 ; 城市雨洪资源利用
  • 英文关键词:sponge city;;low impact development;;storm water management model;;rainfall runoff;;urban waterlogging prevention and control;;urban rainwater resources utilization
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:河南水利与环境职业学院;华北水利水电大学环境与市政工程学院;北京市水科学技术研究院;
  • 出版日期:2018-09-20
  • 出版单位:水利水电技术
  • 年:2018
  • 期:v.49;No.539
  • 基金:国家重点研发计划(2016YFC0401405);; 河南省重大科技专项项目“河南省典型村镇生活污水处理技术集成与示范”(161100310700)
  • 语种:中文;
  • 页:SJWJ201809005
  • 页数:9
  • CN:09
  • ISSN:11-1757/TV
  • 分类号:35-43
摘要
海绵城市是针对解决我国水危机提出的新理念,而低影响开发(LID)设施是构建海绵城市的关键。为了分析不同降雨重现期、不同降雨历时、占地面积对单项LID设施径流控制能力的影响,以亦庄调节池一期工程为研究区域,利用暴雨洪水管理模型(SWMM)进行模拟计算,研究了不同占地面积下各LID设施对不同降雨过程的径流削减效果,分析了降雨重现期及降雨历时与占地面积影响作用的相关性。结果表明:随着降雨重现期由1年增加至10年,透水铺装径流削减率下降了13%~35%;随占地面积占比由25%增至100%时,其径流削减率增大了4. 8%~23%,且占地面积变化对低重现期降雨径流削减效果影响明显,生物滞留槽和植草沟呈相同规律。相反,下凹绿地占地面积变化对高重现期径流削减效果影响较大。绿色屋顶的径流削减率与土壤层厚度成正比,与降雨重现期成反比,且绿色屋顶厚度对低降雨重现期削减效率影响稍大; LID设施的径流削减率随降雨历时增加而增大(削减率增长区间为1. 7%~7. 7%),且占地面积越大,降雨历时变化对径流削减率的影响就越明显。各LID设施的性价比和适用情况对比计算表明,下凹绿地和透水铺装性价比较高,适于作为主控设施大面积应用,而植草沟、生物滞留池及绿色屋顶适于作为辅助设施部分应用。研究成果为选择效益最优的海绵城市建设模式提供科学参考。
        The sponge city is a new idea proposed for solving the water crisis in China,while the low impact development( LID)facilities are the key-links for constructing the sponge city. In order to analyze the impacts of various rainfall recurrence periods,various rainfall durations and land occupancy areas on the runoff control capacity of a single LID facility,a simulation calculation is made with the storm water management model( SWMM) by taking the Phase-I project of Yizhuang Regulation Pool as the study area,in which the runoff reduction effects of all the LID facilities during various rainfall processes under conditions of various land occupancy areas are studied,furthermore,the correlations of the rainfall recurrence period and the rainfall duration with the impact from land occupancy area are analyzed as well. The result shows that along with the increase of rainfall recurrence period from 1 year to 10 years,the runoff reduction rate of thepermeable pavement is decreased by 13% ~ 35%. Following with the increase of the proportion of the land occupancy area from 25% to 100%,its runoff reduction rate is increased by 4. 8% ~ 23%,while the impact from the variation of land occupancy on the rainfall reduction effect of the low rainfall recurrence is significant and the same laws are presented by both the bio-retention trough and the grassed swale. Contrarily,the impact from the variation of the land occupancy of the concave greenland on the runoff reduction effect of the high rainfall recurrence period is relatively large. The runoff reduction rate of the green roof is proportional to the thickness of the soil layer and is inversely proportional to the rainfall recurrence period,while the impact from the soil layer thickness of the green roof on the reduction efficiency of the low rainfall recurrence period is a little bit large. The runoff reduction rate of LID facility is increased along with the increase of the rainfall duration( the interval of the increase of the reduction rate is 1. 7% ~ 7. 7%),while the larger the land occupancy is,the obvious the impact from the variation of the rainfall duration on the runoff reduction rate is to be. It is indicated from the comparative calculation of the cost-performance ratio and applicable status of all the LID facilities that the cost-performance ratios of concave greenland and permeable pavement are higher and then applicable to be applied as the main control facility in large area,while the grassed swale,bio-retention trough and green roof are applicable to be partly applied as the auxiliary facilities. The study result provides a scientific reference for selecting the construction mode of sponge city with optimal benefit.
引文
[1]俞孔坚.美丽中国的水生态基础设施:理论与实践[J].鄱阳湖学刊,2015(10):5-18.
    [2] BRATTEBO B O,BOOTH D B. Long-term stormwater quantity and quality performance of permeable pavement systems[J]. Water research,2003,37(18):4369-76.
    [3]王超.概率法计算不同下沉深度下凹绿地蓄水效率的研究[J].环境科学与管理,2016,41(7):51-54.
    [4]苗展堂.微循环理念下的城市雨水生态系统规划方法研究[D].天津:天津大学,2013.
    [5]赵飞,陈建刚,张书函,等.透水铺装雨水入渗收集与径流削减技术研究[J].给水排水,2011,47(S1):254-258.
    [6]晋存田,赵树旗,闫肖丽,等.透水砖和下凹式绿地对城市雨洪的影响[J].中国给水排水,2010,26(1):40-42,46.
    [7]黄静岩,李俊奇,等.道路生物滞留槽削减雨水径流的实测效果研究[J].中国给水排水,2017,33(11):120-127.
    [8]潘国艳,等.生物滞留槽水质效应的模拟实验[J].陕西师范大学学报(自然科学版),2012,40(6):97-101.
    [9]王雯雯.基于SWMM的低冲击开发模式水文效应模拟评估[D].北京:北京大学,2011.
    [10]朱永杰,毕华兴,等.北京地区不同设计暴雨强度下凹式绿地的减流效果[J].水土保持通报,2015,35(2):121-124.
    [11]翟丹丹,宫永伟.简单式绿色屋顶雨水径流滞留效果的影响因素[J].中国给水排水,2015,31(11):106-110.
    [12]潘雷.绿色屋面在住宅小区的应用探讨[J].建筑热能通风空调,2017,36(7):84-87.
    [13]沈子欣,阚丽艳,车生泉.生态植草沟结构参数变化对降雨径流调蓄净化效应的影响[J].上海交通大学学报(农业科学版),2015,33(6):46-52.
    [14] WU J S,ALLAN C J,SAUNDERS W L,et al.. Characterization and pollutant loading estimation for highway runoff[J]. Journal of environmental engineering,1998,124(7):584-592.
    [15]王晓晨.基于低冲击开发技术的城镇区域雨水系统规划的优化[D].天津:天津大学,2013.
    [16]朋四海,黄俊杰,李田.过滤型生物滞留槽径流污染控制效果研究[J].给水排水,2014,50(6):38-42.
    [17]胡爱兵,李子富,张书函,等.模拟生物滞留槽净化城市机动车道路雨水径流[J].中国给水排水,2012,28(13):75-79.
    [18]许萍,黄俊杰,张建强,等.模拟生物滞留槽强化径流雨水中的氮磷去除研究[J].环境科学与技术,2017,40(2):107-112.
    [19]程江,杨凯,等.下凹式绿地对城市降雨径流污染的削减效应[J].中国环境科学,2009,29(6):611-616.
    [20]张晓菊,董文艺.下凹式绿地径流污染控制与径流量消减影响因素分析[J].环境科学与技术,2017,40(2):113-11.
    [21]张千千,王效科,高勇,等.绿色屋面降雨径流水质及消减污染负荷研究[J].生态学报,2015,35(10):3454-3463.
    [22] WANG S M,HE Q,ZHANG J H,et al. The concentrations distribution and composition of nitrogen and phosphor in stormwater runoff from green roofs[J]. Acta ecologica sinica,2012,32(12):3691-3700.
    [23]郭凤,陈建刚,等.植草沟对北京市道路地表径流的调控效应[J].水土保持通报,2015,35(3):176-181.
    [24]刘连新,张伟勤.高原环境建筑材料[M].北京:中国建材工业出版社,2010.
    [25]黄艳芳.城市建筑屋顶绿化施工技术探微[J].工程技术(引文版),2016(4):133.
    [26]杨斌,赵睿.基于SWMM模型的城市暴雨洪水模拟与分析[J].水利信息化,2017(5):56-62.
    [27]梅超,刘家宏,王浩,等. SWMM原理解析与应用展望[J].水利水电技术,2017,48(5):33-42.
    [28] ROSSMAN L A. Storm Water Management Model user's manual(Version 5. 0)[M]. Georgia:Water Supply and Water Resources Division,National Risk Management Research Laboratory,USEPA,2004.
    [29]胡爱兵,任心欣,等.采用SWMM模拟LID市政道路的雨洪控制效果[J].中国给水排水,2015,31(23):130-133.
    [30]向晨瑶,刘家宏,邵薇薇,等.海绵小区削峰减洪效率对降雨特征的响应[J].水利水电技术,2017,48(6):7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700