用户名: 密码: 验证码:
RNA表观遗传修饰及其在植物中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances on the epigenetic modifications of RNA in plants
  • 作者:鲁良 ; 陈博 ; 曹阳阳 ; 邓玮杭 ; 李晔 ; 林金星 ; 李瑞丽
  • 英文作者:LU Liang;CHEN Bo;CAO Yang-yang;DENG Wei-hang;LI Ye;LIN Jin-xing;LI Rui-li;Beijing Advanced Innovation Center for Tree Breeding by Molecular Design;National Engineering Laboratory for Tree Breeding,College of Biological Sciences and Technology,Beijing Forestry University;
  • 关键词:RNA修饰 ; 6-甲基腺嘌呤 ; 5-甲基胞嘧啶 ; 假尿苷 ; 表观遗传
  • 英文关键词:RNA modification;;N6-methyladenosine;;5-Methylcytosine;;Pseudouridines;;epigenetic
  • 中文刊名:DZXV
  • 英文刊名:Journal of Chinese Electron Microscopy Society
  • 机构:北京林业大学林木分子设计育种高精尖创新中心;北京林业大学生物科学与技术学院林木育种国家工程实验室;
  • 出版日期:2019-04-15
  • 出版单位:电子显微学报
  • 年:2019
  • 期:v.38;No.202
  • 基金:国家重点研发计划课题资助项目(No.2016YFD0600102);; 中央高校基本科研业务费专项资助项目(No.2019ZY29);; 国家自然科学基金面上资助项目(No.31670182);国家自然科学基金重点资助项目(No.31530084);国家自然科学基金青年科学基金资助项目(Nos.31401149,31601149)
  • 语种:中文;
  • 页:DZXV201902021
  • 页数:12
  • CN:02
  • ISSN:11-2295/TN
  • 分类号:105-116
摘要
RNA转录后修饰是将新生RNA分子加工成为成熟产物的修饰过程,它已经成为表观遗传学研究的一个崭新领域,在生物体的生殖、生长和发育等生命活动过程中发挥着十分重要的作用。近年来,人们对RNA的6-甲基腺嘌呤(N~6-methyladenosine,m~6A)、5-甲基胞嘧啶(5-Methylcytosine,m~5C)以及假尿苷修饰(Pseudouridines,Ψ)等几种重要的RNA表观遗传修饰开展了广泛地研究。本文主要阐述了这几种RNA修饰的分布特征、形成机制以及检测方法,并着重总结了它们在植物生长发育中的功能与研究进展等,为今后系统开展RNA表观遗传学的研究提供理论参考。
        The post-transcriptional RNA modification is a modification process that processes nascent RNA molecules into mature products. It represents an emerging research territory in epigenetic RNA modifications,which plays crucial roles in reproduction,growth and development by controlling gene express patterns. Recently,the post-transcriptional RNA modifications such as N6-methyladenosine( m6 A),5-methylcytosine( m5 C),and Pseudouridines( Ψ) have been widely studied. This review mainly focuses on the distribution characteristics,formation mechanism and detection methods of these RNA modifications,with special emphasis on the recent progress of its functions in the growth and development of plants,which provides valuable information for further study on the epigenetic RNA modifications in plants.
引文
[1]LUI L,LOWE T.Small nucleolar RNAs and RNA-guided post-transcriptional modification[J].Essays Biochem,2013,54:53-77.
    [2]CANTARA W A,CRAIN P F,ROZENSKI J,et al.The RNA modification database,RNAMDB:2011update[J].Nucleic Acids Res,2011,39:D195-201.
    [3]LINDER B,GROZHIK A V,OLARERIN-GEORGE AO,et al.Single-nucleotide-resolution mapping of m6Aand m6Am throughout the transcriptome[J].Nat Methods,2015,12(8):767-772.
    [4]FU Y,DOMINISSINI D,RECHAVI G,et al.Gene expression regulation mediated through reversible m(6)A RNA methylation[J].Nat Rev Genet,2014,15(5):293-306.
    [5]SCHWARTZ S,MUMBACH M R,JOVANOVIC M,et al.Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5'sites[J].Cell Rep,2014,8(1):284-296.
    [6]ZHANG X,JIA G.RNA epigenetic modification:N6-methyladenosine[J].Hereditas,2016,38(4):275-288.
    [7]蒋舫玮,徐晓峰,崔香环,等.DRM1,DRM2参与拟南芥愈伤组织的形成[J].电子显微学报,2014,33(1):55-61.
    [8]MACHNICKA M A,MILANOWSKA K,OSMANOGLOU O,et al.MODOMICS:a database of RNAmodification pathways-2013 update[J].Nucleic Acids Res,2013,41:D262-267.
    [9]BLANCO S,FRYE M.Role of RNA methyltransferases in tissue renewal and pathology[J].Curr Opin Cell Biol,2014,31:1-7.
    [10]CLANCY M J,SHAMBAUGH M E,TIMPTE C S,et al.Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA:a potential mechanism for the activity of the IME4 gene[J].Nucleic Acids Res,2002,30(20):4509-4518.
    [11]LEVIS R,PENMAN S.5'-terminal structures of poly(A)+cytoplasmic messenger RNA and of poly(A)+and poly(A)-heterogeneous nuclear RNA of cells of the dipteran Drosophila melanogaster[J].J Mol Biol,1978,120(4):487-515.
    [12]DESROSIERS R,FRIDERICI K,ROTTMAN F.Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells[J].Proc Natl Acad Sci USA,1974,71(10):3971-3975.
    [13]DUBIN D T,TAYLOR R H.The methylation state of poly A-containing messenger RNA from cultured hamster cells[J].Nucleic Acids Res,1975,2(10):1653-1668.
    [14]FURUICHI Y,MORGAN M,SHATKIN A J,et al.Methylated,blocked 5 termini in He La cell mRNA[J].Proc Natl Acad Sci USA,1975,72(5):1904-1908.
    [15]WEI C M,MOSS B.Nucleotide sequences at the N6-methyladenosine sites of He La cell messenger ribonucleic acid[J].Biochem,1977,16(8):1672-1676.
    [16]ADAMS J M,CORY S.Modified nucleosides and bizarre 5'-termini in mouse myeloma mRNA[J].Nature,1975,255(5503):28-33.
    [17]KRUG R M,MORGAN M A,SHATKIN A J.Influenza viral mRNA contains internal N6-methyladenosine and5'-terminal 7-methylguanosine in cap structures[J].JVirol,1976,20(1):45-53.
    [18]WEI C M,MOSS B.Methylated nucleotides block 5'-terminus of vaccinia virus messenger RNA[J].Proc Natl Acad Sci USA,1975,72(1):318-322.
    [19]HAUGLAND R A,CLINE M G.Post-transcriptional modifications of oat coleoptile ribonucleic acids.5'-terminal capping and methylation of internal nucleosides in poly(A)-rich RNA[J].Eur J Biochem,1980,104(1):271-277.
    [20]SANEYOSHI M,HARADA F,NISHIMURA S.Isolation and characterization of N6-methyladenosine from Escherichia coli valine transfer RNA[J].Biochim Biophys Acta,1969,190(2):264-273.
    [21]IWANAMI Y,BROWN G M.Methylated bases of ribosomal ribonucleic acid from He La cells[J].Arch Biochem Biophys,1968,126(1):8-15.
    [22]BRINGMANN P,LUHRMANN R.Antibodies specific for N6-methyladenosine react with intact snRNPs U2 and U4/U6[J].FEBS Lett,1987,213(2):309-315.
    [23]CHEN T,HAO Y J,ZHANG Y,et al.m(6)A RNAmethylation is regulated by microRNAs and promotes reprogramming to pluripotency[J].Cell Stem Cell,2015,16(3):289-301.
    [24]NARAYAN P,ROTTMAN F M.An in vitro system for accurate methylation of internal adenosine residues in messenger RNA[J].Science,1988,242(4882):1159-1162.
    [25]BOKAR J A,SHAMBAUGH M E,POLAYES D,et al.Purification and c DNA cloning of the adomet-binding subunit of the human mRNA(N6-adenosine)-methyltransferase[J].RNA,1997,3(11):1233-1247.
    [26]LIU J,YUE Y,HAN D,et al.A METTL3-METTL14complex mediates mammalian nuclear RNA N6-adenosine methylation[J].Nat Chem Biol,2014,10(2):93-95.
    [27]WANG X,FENG J,XUE Y,et al.Corrigendum:structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex[J].Nature,2017,542(7640):260.
    [28]PING X,SUN B,WANG L,et al.Mammalian WTAPis a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J].Cell Res,2014,24(2):177-189.
    [29]JIA G F,FU Y,ZHAO X,et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesityassociated FTO[J].Nat Chem Biol,201,7(12):885-887.
    [30]ZHENG G,DAHL J A,NIU Y,et al.ALKBH5 is a mammalian RNA demethylase that impacts RNAmetabolism and mouse fertility[J].Mol Cell,2013,49(1):18-29.
    [31]YUE Y,LIU J,HE C.RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation[J].Gene Dev,2015,29(13):1343-1355.
    [32]LI F,ZHAO D,WU J,et al.Structure of the YTHdomain of human YTHDF2 in complex with an m(6)Amononucleotide reveals an aromatic cage for m(6)Arecognition[J].Cell Res,2014,24(12):1490-1492.
    [33]LUO S,TONG L.Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTHdomain[J].Proc Natl Acad Sci USA,2014,111(38):13834-13839.
    [34]THELER D,DOMINGUEZ C,BLATTER M,et al.Solution structure of the YTH domain in complex with N6-methyladenosine RNA:a reader of methylated RNA[J].Nucleic Acids Res,2014,42(22):13911-13919.
    [35]XU C,WANG X,LIU K,et al.Structural basis for selective binding of m6A RNA by the YTHDC1 YTHdomain[J].Nat Chem Biol,2014,10(11):927-929.
    [36]WANG C,ZHU Y,BAO H,et al.A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1[J].Nucleic Acids Res,2016,44(2):969-982.
    [37]LI D,ZHANG H,HONG Y,et al.Genome-wide identification,biochemic characterization,and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice.Plant Mol Biol Rep,2014,32:1169-1186.
    [38]PATIL D,PICKERING B,Jaffrey S.Reading m(6)Ain the transcriptome:m(6)A-Binding Proteins[J].Trends Cell Biol,2018,28(2):113-127.
    [39]WANG X,LU Z,GOMEZ A,et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature,2014,505(7481):117-120.
    [40]WANG X,ZHAO B S,ROUNDTREE I A,et al.N(6)-methyladenosine modulates messenger RNAtranslation efficiency[J].Cell,2015,161(6):1388-1399.
    [41]LI X,XIONG X,WANG K,et al.Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome[J].Nat Chem Biol,2016,12(5):311-316.
    [42]RINGVOLL J,NORDSTRAND L M,VAGBO C B,et al.Repair deficient mice reveal m ABH2 as the primary oxidative demethylase for repairing 1meA and 3meClesions in DNA[J].EMBO J,2006,25(10):2189-2198.
    [43]CANAANI D,KAHANA C,LAVI S,et al.Identification and mapping of N6-methyladenosine containing sequences in simian virus 40 RNA[J].Nucleic Acids Res,1979,6(8):2879-2899.
    [44]KANE S E,BEEMON K.Precise localization of m6A in rous sarcoma virus RNA reveals clustering of methylation sites:implications for RNA processing[J].Mol Cell Biol,1985,5(9):2298-2306.
    [45]CHARETTE M,GRAY M W.Pseudouridine in RNA:what,where,how,and why[J].IUBMB Life,2000,49(5):341-351.
    [46]DOMINISSINI D,MOSHITCH-MOSHKOVITZ S,SCHWARTZ S,et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J].Nature,2012,485(7397):201-206.
    [47]MEYER K D,SALETORE Y,ZUMBO P,et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3'UTRs and near stop codons[J].Cell,2012,149(7):1635-1646.
    [48]GOLOVINA A Y,DZAMA M M,PETRIUKOV K S,et al.Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting(HRM)analysis[J].Nucleic Acids Res,2014,42(4):e27.
    [49]LIU N,PARISIEN M,DAI Q,et al.Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA[J].RNA,2013,19(12):1848-1856.
    [50]AGUILO F,ZHANG F,SANCHO A,et al.Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming[J].Cell Stem Cell,2015,17(6):689-704.
    [51]JONES P A.Functions of DNA methylation:islands,start sites,gene bodies and beyond[J].Nat Rev Genet,2012,13(7):484-492.
    [52]SUZUKI M M,BIRD A.DNA methylation landscapes:provocative insights from epigenomics[J].Nat Rev Genet,2008,9(6):465-476.
    [53]HELM M.Post-transcriptional nucleotide modification and alternative folding of RNA[J].Nucleic Acids Res,2006,34(2):721-733.
    [54]AGRIS P F.Bringing order to translation:the contributions of transfer RNA anticodon-domain modifications[J].EMBO Rep,2008,9(7):629-635.
    [55]SCHAEFER M,POLLEX T,HANNA K,et al.RNAcytosine methylation analysis by bisulfite sequencing[J].Nucleic Acids Res,2009,37(2):e12.
    [56]EDELHEIT S,SCHWARTZ S,MUMBACH M R,et al.Transcriptome-wide mapping of 5-methylcytidine RNAmodifications in bacteria,archaea,and yeast reveals m5C within archaeal mRNAs[J].PLoS Genet,2013,9(6):e1003602.
    [57]CHOW C S,LAMICHHANE T N,MAHTO S K.Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications[J].ACS Chem Biol,2007,2(9):610-619.
    [58]ALEXANDROV A,CHERNYAKOV I,GU W,et al.Rapid tRNA decay can result from lack of nonessential modifications[J].Mol Cell,2006,21(1):87-96.
    [59]CHEN Y,SIERZPUTOWSKA-GRACZ H,GUENTHERR,et al.5-Methylcytidine is required for cooperative binding of Mg2+and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA[J].Biochem,1993,32(38):10249-10253.
    [60]GIGOVA A,DUGGIMPUDI S,POLLEX T,et al.Acluster of methylations in the domain IV of 25S rRNA is required for ribosome stability[J].RNA,2014,20(10):1632-1644.
    [61]ZHANG X,LIU Z,YI J,et al.The tRNAmethyltransferase NSun2 stabilizes p16INK(4)mRNAby methylating the 3'-untranslated region of p16[J].Nat Commun,2012,3:712.
    [62]SQUIRES J E,PATEL H R,NOUSCH M,et al.Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA[J].Nucleic Acids Res,2012,40(11):5023-5033.
    [63]CUI X,LIANG Z,SHEN L,et al.5-Methylcytosine RNA,methylation in Arabidopsis thaliana[J].Mol Plant,2017,10(11):1387-1399.
    [64]BECKER M,MULLER S,NELLEN W,et al.Pmt1,a Dnmt2 homolog in Schizosaccharomyces pombe,mediates tRNA methylation in response to nutrient signaling[J].Nucleic Acids Res,2012,40(22):11648-11658.
    [65]BURGESS A L,DAVID R,SEARLE I R.Conservation of tRNA and rRNA 5-methylcytosine in the kingdom plantae[J].BMC Plant Biol,2015,15:199.
    [66]GOLL M G,KIRPEKAR F,MAGGERT K A,et al.Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J].Science,2006,311(5759):395-398.
    [67]JURKOWSKI T P,MEUSBURGER M,PHALKE S,et al.Human DNMT2 methylates tRNA(Asp)molecules using a DNA methyltransferase-like catalytic mechanism[J].RNA,2008,14(8):1663-1670.
    [68]AUXILIEN S,GUERINEAU V,SZWEYKOWSKA-KULINSKA Z,et al.The human tRNA m(5)Cmethyltransferase Misu is multisite-specific[J].RNABiol,2012,9(11):1331-1338.
    [69]MOTORIN Y,GROSJEAN H.Multisite-specific tRNA:m5C-methyltransferase(Trm4)in yeast Saccharomyces cerevisiae:identification of the gene and substrate specificity of the enzyme[J].RNA,1999,5(8):1105-1118.
    [70]TUORTO F,LIEBERS R,MUSCH T,et al.RNAcytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis[J].Nat Struct Mol Biol,2012,19(9):900-905.
    [71]BLANCO S,KUROWSKI A,NICHOLS J,et al.The RNA-methyltransferase Misu(NSun2)poises epidermal stem cells to differentiate[J].PLoS Genet,2011,7(12):e1002403.
    [72]TUSSAIN S,TUORTO F,MENON S,et al.The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation[J].Mol Cell Biol,2013,33(8):1561
    [73]KHAN M A,RAFIQ M A,NOOR A,et al.Mutation in NSUN2,which encodes an RNA methyltransferase,causes autosomal-recessive intellectual disability[J].Am J Hum Genet,2012,90(5):856-863.
    [74]ABBASI-MOHEB L,MERTEL S,GONSIOR M,et al.Mutations in NSUN2 cause autosomal-recessive intellectual disability[J].Am J Hum Genet,2012,90(5):847-855.
    [75]FAHIMINIYA S,ALMURIEKHI M,NAWAZ Z,et al.Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar[J].Clin Genet,2014,86(2):134-141.
    [76]MARTINEZ F J,LEE,J H,LEE J E,et al.Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a dubowitz-like syndrome[J].JMed Genet,2012,49(6):380-385.
    [77]PAVLOPOULOU A,KOSSIDA S.Phylogenetic analysis of the eukaryotic RNA(cytosine-5)-methyltransferases[J].Genomics,2009,93(4):350-357.
    [78]CHEN P,JAGER G,ZHENG B.Transfer RNAmodifications and genes for modifying enzymes in Arabidopsis thaliana[J].BMC Plant Biol,2010,10:201.
    [79]KHODDAMI V,CAIRNS B R.Identification of direct targets and modified bases of RNA cytosine methyltransferases[J].Nat Biotechnol,2013,31(5):458-464.
    [80]HUSSAIN S,SAJINI A A,BLANCO S,et al.NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs[J].Cell Rep,2013,4(2):255-261.
    [81]DAVID R,BURGESS A,PARKER B,et al.Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs[J].Plant Cell,2017,29(3):445-460.
    [82]BEHM-ANSMANT I,HELM M,MOTORIN Y.Use of specific chemical reagents for detection of modified nucleotides in RNA[J].J Nucleic Acids,2011:408053.
    [83]AMORT T,RIEDER D,WILLE A,et al.Distinct 5-methylcytosine profiles in poly(A)RNA from mouse embryonic stem cells and brain[J].Genome Biol,2017,18(1):1.
    [84]HUANG Y,PASTOR W A,SHEN,Y,et al.The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing[J].PLoS One,2010,5(1):e8888.
    [85]SHAPIRO R,BRAVERMAN B,LOUIS J B,et al.Nucleic acid reactivity and conformation.II.Reaction of cytosine and uracil with sodium bisulfite[J].J Biol Chem,1973,248(11):4060-4064.
    [86]OFENGAND J.Ribosomal RNA pseudouridines and pseudouridine synthases[J].FEBS Lett,2002,514(1):17-25.
    [87]HAMMA T,FERRE-D'AMARE A R.Pseudouridine synthases[J].Chem Biol,2006,13(11):1125-1135.
    [88]KISS T,FAYET E,JADY B E,et al.Biogenesis and intranuclear trafficking of human box C/D and H/ACARNPs[J].Cold Spring Harb Symp Quant Biol,2006,71:407-417.
    [89]REICHOW S L,HAMMA T,FERRE-D'AMARE A R,et al.The structure and function of small nucleolar ribonucleoproteins[J].Nucleic Acids Res,2007,35(5):1452-1464.
    [90]YE K.H/ACA guide RNAs,proteins and complexes[J].Curr Opin Struc Biol,2007,17(3):287-292.
    [91]HENRAS A K,DEZ C,HENRY Y.RNA structure and function in C/D and H/ACA s(no)RNPs[J].Curr Opin Struc Biol,2004,14(3):335-343.
    [92]WU G W,YU A T,KANTARTZIS A,et al.Functions and mechanisms of spliceosomal small nuclear RNApseudouridylation[J].Wiley Interdiscip Rev RNA,2011,2(4):571-581.
    [93]KEITH G.Mobilities of modified ribonucleotides on twodimensional cellulose thin-layer chromatography[J].Biochimie,1995,77(1-2):142-144.
    [94]GRADEEN C Y,BILLAY D M,CHAN S C.Analysis of bumetanide in human urine by high-performance liquid chromatography with fluorescence detection and gas chromatography/mass spectrometry[J].J Anal Toxicol,1990,14(2):123-126.
    [95]OFENGAND J,BAKIN A.Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes,prokaryotes,archaebacteria,mitochondria and chloroplasts[J].Mol Biol,1997,266(2):246-268.
    [96]OFENGAND J,DEL CAMPO M,KAYA Y.Mapping pseudouridines in RNA molecules[J].Methods,2001,25(3):365-373.
    [97]LEI Z X,EI Z,YI C A.Radiolabeling-free,q PCR-based method for locus-specific pseudouridine detection[J].Angew Chem Int Ed Engl,2017,56(47):14878-14882.
    [98]JACK K,BELLODI C,LANDRY D M,et al.rRNApseudouridylation defects affect ribosomal ligand binding and translationalfidelity from yeast to human cells[J].Mol Cell,2011,44(4):660-666.
    [99]KING T H,LIU B,MCCULLY R R,et al.Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center[J].Mol Cell,2003,11(2):425-435.
    [100]KARIJOLICH J,YU Y T.Converting nonsense codons into sense codons by targeted pseudouridylation[J].Nature,2011,474(7351):395-398.
    [101]SHARMA S,WATZINGER P,KOTTER P,et al.Identification of a novel methyltransferase,Bmt2,responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae[J].Nucleic Acids Res,2013,41(10):5428-5443.
    [102]DOMINISSINI D,NACHTERGAELE S,MOSHITCH-MOSHKOVITZ S,et al.The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA[J].Nature,2016,530(7591):441-446.
    [103]ZHAO B S,ROUNDTREE I A,HE C.Posttranscriptional gene regulation by mRNA modifications[J].Nature Reviews:Mol Cell Biol,2017,18(1):31-42.
    [104]ZHOU H,KIMSEY I J,NIKOLOVA E N,et al.m(1)A and m(1)G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs[J].Nat Struct Mol Biol,2016,23(9):803-810.
    [105]SMITH J D,DUNN D B.An additional sugar component of ribonucleic acids[J].Biochim Biophys Acta,1959,31(2):573-575.
    [106]BEAL P A,MAYDANOVYCH O,POKHAREL S.The chemistry and biology of RNA editing by adenosine deaminases[J].Nucleic Acids Symp Ser,2007,(51):83-84.
    [107]BACHELLERIE J P,CAVAILLE J,HUTTENHOFERA.The expanding snoRNA world[J].Biochimie,2002,84(8):775-790.
    [108]CAVAILLE J,BUITING K,KIEFMANN M,et al.Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization[J].Proc Natl Acad Sci USA,2000,97(26):14311-14316.
    [109]DONG Z W,BUITING K,KIEFMANN M,et al.RTL-P:a sensitive approach for detecting sites of 2'-O-methylation in RNA molecules[J].Nucleic Acids Res,2012,40(20):e157.
    [110]ASCHENBRENNER J,MARX A.Direct and sitespecific quantification of RNA 2'-O-methylation by PCR with an engineered DNA polymerase[J].Nucleic Acids Res,2016,44(8):3495-3502.
    [111]ZHONG S,LI H,BODI Z,et al.MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor[J].Plant Cell,2008,20(5):1278-1288.
    [112]VESPA L,VACHON G,BERGER F,et al.The immunophilin-interacting protein At FIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication[J].Plant Physiol,2004,134(4):1283-1292.
    [113]DUAN H C,WEI L H,ZHANG C,et al.ALKBH10Bis an RNA N(6)-methyladenosine demethylase affecting Arabidopsis floral transition[J].Plant Cell,2017,29(12):2995-3011.
    [114]WEI L H,SONG P,WANG Y,et al.The m(6)Areader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis[J].Plant Cell,2018,30(5):968-985.
    [115]REICHEL M,LIAO Y,RETTEL M,et al.In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings[J].Plant Cell,2016,28(10):2435-2452.
    [116]王广超,周莹,祝建.LBD29基因在拟南芥侧根发生过程中的作用[J].电子显微学报,2009,28(6):533-538.
    [117]SHEN L,LIANG Z,GU X,et al.N(6)-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis[J].Dev Cell,2016,38(2):186-200.
    [118]MIELECKI D,ZUGAJ D L,MUSZEWSKA A,et al.Novel Alk B dioxygenases-alternative models for in silico and in vivo studies[J].PLoS One,2012,7(1):e30588.
    [119]MEYER K D,PATIL D P,ZHOU J,et al.5'UTR m(6)A promotes cap-independent translation[J].Cell,2015,163(4):999-1010.
    [120]XIAO W,ADHIKARI S,DAHAL U,et al.Nuclear m(6)A reader YTHDC1 regulates mRNA splicing[J].Mol Cell,2016,61(4):507-519.
    [121]OK S H,JEONG H J,BAE J M,et al.Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization[J].Plant Physiol,2005,139(1):138-150.
    [122]SCUTENAIRE J,DERAGON J M,JEAN V,et al.The YTH domain protein ECT2 Is an m(6)A reader required for normal trichome branching in Arabidopsis[J].Plant Cell,2018,30(5):986-1005.
    [123]ARRIBAS-HERNANDEZ L,BRESSENDORFF S,HANSEN M H,et al.An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis[J].Plant Cell,2018,30:952-967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700