用户名: 密码: 验证码:
不同显微组织的块体双相Ag-25Cu合金在NaCl溶液中的腐蚀行为(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion behavior of bulk two-phase Ag-25Cu alloys with different microstructures in NaCl aqueous solution
  • 作者:曹中秋 ; 尹晓桐 ; 贾中秋 ; 田秋月 ; 鲁捷 ; 张轲 ; 王艳
  • 英文作者:Zhong-qiu CAO;Xiao-tong YIN;Zhong-qiu JIA;Qiu-yue TIAN;Jie LU;Ke ZHANG;Yan WANG;College of Chemistry and Chemical Engineering, Shenyang Normal University;Experimental Teaching Centre, Shenyang Normal University;
  • 关键词:纳米晶 ; Ag-Cu块体合金 ; 机械合金化 ; 液相还原 ; 显微组织 ; 电化学腐蚀
  • 英文关键词:nanocrystalline;;Ag-Cu bulk alloy;;mechanical alloying;;liquid phase reduction;;microstructure;;electrochemical corrosion
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:沈阳师范大学化学化工学院;沈阳师范大学实验教学中心;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Projects(51271127,51501118)supported by the National Natural Science Foundation of China;; Project(2018304025)supported by Liaoning Provincial Key Research and Development Program,China;; Project(201602679)supported by the Natural Science Foundation of Liaoning Province,China
  • 语种:英文;
  • 页:ZYSY201907015
  • 页数:8
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:146-153
摘要
为了更好地了解块体双相Ag-25Cu(at.%)合金的腐蚀机制,采用液相还原(LPR)、机械合金化(MA)和粉末冶金(PM)法分别制备显微组织不同的2种纳米晶和1种常规尺寸的Ag-25Cu块体合金,并采用电化学方法对比研究此3种不同显微组织Ag-25Cu合金在NaCl溶液中的腐蚀行为。结果表明:粉末冶金法制备的常规尺寸PMAg-25Cu合金的显微组织极不均匀;相反,液相还原法和机械合金化法制备的纳米晶LPRAg-25Cu和MAAg-25Cu合金的显微组织较均匀,而纳米晶LPRAg-25Cu合金的显微组织最均匀。MAAg-25Cu合金的腐蚀速率高于PMAg-25Cu合金的腐蚀速率,但低于LPRAg-25Cu合金的腐蚀速率。3种Ag-25Cu合金表面形成的钝化膜均具有n型半导体特征。LPRAg-25Cu合金的钝化电流密度低于PMAg-25Cu合金的钝化电流密度,但高于MAAg-25Cu合金的钝化电流密度。
        In order to have a better understanding on the corrosion mechanisms of bulk two-phase Ag-25 Cu(at.%) alloys with different microstructures, two bulk nanocrystalline Ag-25 Cu alloys and one coarse grained counterpart were prepared by liquid phase reduction(LPR), mechanical alloying(MA) and powder metallurgy(PM) methods, respectively. Their corrosion behavior was investigated comparatively using electrochemical methods in NaCl aqueous solution. Results show that the microstructure of the coarse grained PMAg-25 Cu alloy is extremely inhomogeneous. On the contrary, compared with PMAg-25 Cu alloy, the microstructures of the nanocrystalline LPRAg-25 Cu and MAAg-25 Cu alloys are more homogeneous, especially for LPRAg-25 Cu alloy. The corrosion rate of MAAg-25 Cu alloy is higher than that of PMAg-25 Cu alloy, but lower than that of LPRAg-25 Cu alloy. Furthermore, the passive films formed by three Ag-25 Cu alloys exhibit n-type semiconducting properties. The passive current density of LPRAg-25 Cu alloy is lower than that of PMAg-25 Cu alloy, but higher that of MAAg-25 Cu alloy.
引文
[1] LU K. Surface nanocrystallization(SCN)of metallic materials—Presentation of the concept behind a new approach[J]. Journal of Materials Science and Technology, 1999, 15:193-197.
    [2] PITCHAYYAPILLAI G, SEENIKANNAN P, BALASUNDAR P,NARAYANASAMY P. Effect of nano-silver on microstructure,mechanical and tribological properties of cast 6061 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27:2137-2145.
    [3] HU Kun, YUAN Du, LüShu-lin, WU Shu-sen. Effects of nano-Si Cpcontent on microstructure and mechanical properties of Si Cp/A356composites assisted with ultrasonic treatment[J]. Transactions of Nonferrous Metals Society of China, 2018, 28:2173-2180.
    [4] CHIANPAIROT A, LOTHONGKUM G, SCHUH C A,BOONYONGMANEERAT Y. Corrosion of nanocrystalline Ni-W alloys in alkaline and acidic 3.5 wt.%Na Cl solutions[J]. Corrosion Science, 2011, 53:1066-1071.
    [5] MENG G Z, LI Y, WANG F H. The corrosion behavior of Fe-10Cr nanocrystalline coating[J]. Electrochimica Acta, 2006, 51:4277-4284.
    [6] LUO W, QIAN C, WU X J, YAN M. Electrochemical corrosion behaviour of nanocrystalline copper bulk[J]. Materials Science and Engineering A, 2007, 452-453:524-528.
    [7] PAN C, LIU L, LI Y, WANG F H. Pitting corrosion of 304SS nanocrystalline thin film[J]. Corrosion Science, 2013, 73:32-43.
    [8] BAKKAR A, NEUBERT V. Electrodeposition and corrosion characterisation of micro-and nano-crystalline aluminium from Al Cl3/1-ethyl-3-methylimidazolium chloride ionic liquid[J].Electrochimca Acta, 2013, 103:211-218.
    [9] LU H B, LI Y, WANG F H. Dealloying behaviour of Cu-20Zr alloy in hydrochloric acid solution[J]. Corrosion Science, 2006, 48:2106-2119.
    [10] LIU L, LI Y, WANG F H. Influence of nanocrystallization on passive behaviour of Ni-based superalloy in acidic solutions[J].Electrochimca Acta, 2007, 52:2392-2400.
    [11] WANG L P, ZHANG J Y, GAO Y, XUE Q J, HU L T, XU T. Grain size effect in corrosion behaviour of electrodeposited nanocrystalline Ni coatings in alkaline solution[J]. Scripta Materialia, 2006, 55:657-660.
    [12] OGUZIE E E, LI Y, WANG F H. Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel:Synergistic effect of methionine and iodide ion[J].Eelectrochimica Acta, 2007, 52:6988-6996.
    [13] PINTO E M, RAMOS A S, VIEIRA M T, BRETT C M A. A corrosion study of nanocrystalline copper thin films[J]. Corrosion Science, 2010, 52:3891-3895.
    [14] BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions, 1970, 1:2943-2951.
    [15] XU J, HERR U, KLASSEN T, AVERBACK R S. Formation of supersaturated solid solutions in the immiscible Ni-Ag system by mechanical alloying[J]. Journal of Applied Physics, 1996, 79:3935-3945.
    [16] RAJABI M, SEDIGHI R M, RABIEE S M. Thermal stability of nanocrystalline Mg-based alloys prepared via mechanical alloying[J].Transactions of Nonferrous Metals Society of China, 2016, 26:398-405.
    [17] ZHU H T, ZHANG C Y, YIN Y S. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation[J]. Journal of Crystal Growth, 2004,270:722-728.
    [18] WANG C L, LIN S Z, NIU Y, WU W T, ZHAO Z L. Microstructual properties of bulk nanocrystalline Ag-Ni alloy prepared by hot pressing of mechanically pre-alloyed powders[J]. Applied Physics A—Materials Science and Processing, 2003, 76:157-163.
    [19] CAO Z Q, ZHU X M, LI F C. Study on Nanocrystalline bulk Ag-50Ni alloy prepared by aqueous reducing method[J]. Rare Metal Materials and Engineering, 2008, 37:1221-1224.(in Chinese)
    [20] VILLARS P, PRINCE A, OKAMOTO H. Handbook of binary alloys phase diagrams[M]. Ohio:ASM International in Materials Park,1997.
    [21] CONWAY B E, BOCKRIS J O, WHITE R E. Modern aspects of electrochemical impedance spectroscopy and its applications[M].New York:Kluwer Academic/Plenum Publishers, 1999.
    [22] CAO C N. Corrosion electrochemistry[M]. Beijing:Chemical Industry Press, 1994.(in Chinese)
    [23] ATKINS P W. Physical chemistry[M]. 15th ed. Oxford:Oxford University Press, 1994.
    [24] MORISON S R. Electrochemistry at semiconductor and oxidized metal electrodes[M]. New York:Plenum Press, 1980.
    [25] YOUNG K F, FREDERIKSE H P R. Compilation of the static dielectric constant of inorganic solids[J]. Journal of Physical&Chemical Reference Data, 1973, 2:313-410.
    [26] KEAR G, BARKER B D, WALSH F C. Electrochemical corrosion of unalloyed copper in chloride media—A critical review[J].Corrosion Science, 2004, 46:109-135.
    [27] ZHU X L, LIN L Y, LEI T Q. Process of formation of corrosion films on alloy 70Cu-30Ni in seawater[J]. Acta Metallurgica Sinica,1997, 33:1256-1261.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700