用户名: 密码: 验证码:
三江源国家公园生态功能时空分异特征及其重要性辨识
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial and temporal variations and the importance of hierarchy of ecosystem functions in the Three-river-source National Park
  • 作者:曹巍 ; 刘璐璐 ; 吴丹 ; 黄麟
  • 英文作者:CAO Wei;LIU Lulu;WU Dan;HUANG Lin;Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS;School of Architecture and Civil Engineering, Chengdu University;Nanjing Institute of Environmental Sciences,Ministry of Environmental Protection;
  • 关键词:生态功能 ; 时空变化 ; 重要性分级 ; 三江源国家公园
  • 英文关键词:ecosystem functions;;spatial-temporal variation;;importance hierarchy;;the Three-river-source National Park
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院地理科学与资源研究所陆地表层格局与模拟院重点实验室;成都大学建筑与土木工程学院;环境保护部南京环境科学研究所;
  • 出版日期:2019-02-23
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(2017YFC0506404)
  • 语种:中文;
  • 页:STXB201904022
  • 页数:14
  • CN:04
  • ISSN:11-2031/Q
  • 分类号:240-253
摘要
三江源国家公园的建立有利于在该区域实行最严格的生态保护,筑牢国家生态安全屏障。为摸清三江源国家公园生态本底,基于遥感数据,地理信息系统平台及生态评估模型模拟等技术手段,分析了三江源国家公园生态系统类型,2000—2015年生态功能的时空分异特征及变化趋势,辨识其重要性,并对其变化驱动因素进行初探。结果表明:(1)三江源国家公园以草地、荒漠、水体与湿地生态系统为主,面积占比达到99.8%。(2)三江源国家公园水源涵养、土壤保持及防风固沙极重要区的占比分别为15.3%、13.7%和22.4%。(3)整体呈现东部以水源涵养、中部以土壤保持、西部以防风固沙为核心生态功能的空间格局。(4)2000—2015年,水源涵养功能量总体下降,但提升区域面积占比达84.5%,极重要区呈现下降态势;土壤保持功能量总体提升,年变化趋势为987万t/a,全区超过95%的地区均呈上升趋势;防风固沙功能由于风速减小及植被覆盖度的降低,出现下降态势,为-356万t/a。(5)气候暖湿化以及三江源生态保护工程的实施是三江源国家公园生态功能总体提升的主要原因,然而草地退化态势尚未完全遏制,局部地区植被覆盖度仍有所下降。为实现国家公园和自然资源的严格保护和永续利用,需对其进行统筹规划、科学布局,在科学把握生态系统自然规律的基础上,分区、分级对其进行生态保护和修复。
        The establishment of the Three-river-source National Park is beneficial because the strictest ecological protection extended to this area helps to strengthen the sustainable protection of the "Chinese water tower" and to enhance the national ecological security barrier. In order to understand the ecological background of the Three-river-source National Park, the spatial distribution of the ecosystem, the temporal and spatial variation of ecological functions from 2000 to 2015, and the importance hierarchy of the ecosystem functions were analyzed by using remote sensing data, a geographical information system, and model simulations. The results showed that:(1) Grassland, desert, water, and wetland ecosystems are the main ecosystem types in the Three-river-source National Park, and they accounted for 99.8% of the total area.(2) Areas with extremely important water regulation, soil conservation, wind prevention/sand fixation functions accounted for approximately 15.3%, 13.7%, and 22.4% of the total area in the Three-river-source National Park, respectively.(3) In the eastern, central, and western parts of the Three-river-source National Park, the core ecosystem functions were the water conservation, soil conservation, and wind prevention/sand fixation functions, respectively.(4) From 2000 to 2015, the water conservation volume decreased overall, while the increased area accounted for 84.5% of the total area, and the area of extremely important site decreased. The overall improvement of the soil conservation function was significant both in volume with a change of 9.87×10~6 t/a and in the improved area, which was more than 95%. However, the wind prevention/sand fixation function showed a declining trend, because of the decline in wind speed and vegetation coverage, with a change of-3.56×10~6 t/a.(5) A warm and wet climate and the implementation of the ecological protection project were the main reasons for the improvement of ecosystem functions in the Three-river-source National Park. However, grassland degradation was not fundamentally reversed, and vegetation coverage still declined regionally. Thus, the restoration of degraded grassland must be prioritized and the integrated capacity of ecosystem functions remains to be improved. For the strict protection and sustainable use of the Three-river-source National Park and its natural resources, overall planning and scientific layout should be scrutinized, and classifications and subarea protection should be implemented based on the natural law of the ecosystem.
引文
[1] Shao Q Q, Cao W, Fan J W, Huang L, Xu X L. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. Journal of Geographical Sciences, 2017, 27(2): 183-204.
    [2] 何跃君. 关于三江源国家公园体制试点的做法、问题和建议. 中国生态文明, 2016, (6): 74-79.
    [3] 国家发展和改革委员会. 三江源国家公园总体规划. (2018-01-12). http://www.ndrc.gov.cn/zcfb/zcfbghwb/201801/W020180117588510391412.pdf.
    [4] 付梦娣, 田俊量, 朱彦鹏, 田瑜, 赵志平, 李俊生. 三江源国家公园功能分区与目标管理. 生物多样性, 2017, 25(1): 71-79.
    [5] 乔慧捷, 汪晓意, 王伟, 罗振华, 唐科, 黄燕, 杨胜男, 曹伟伟, 赵新全, 江建平, 胡军华. 从自然保护区到国家公园体制试点: 三江源国家公园环境覆盖的变化及其对两栖爬行类保护的启示. 生物多样性, 2018, 26(2): 202-209.
    [6] 黄宝荣, 王毅, 苏利阳, 张丛林, 程多威, 孙晶, 何思源. 我国国家公园体制试点的进展、问题与对策建议. 中国科学院院刊, 2018, 33(1): 76-85.
    [7] 窦亚权, 李. 我国国家公园建设现状及发展理念探析. 世界林业研究, 2018, 31(1): 75-80.
    [8] 向宝惠, 曾瑜皙. 三江源国家公园体制试点区生态旅游系统构建与运行机制探讨. 资源科学, 2017, 39(1): 50-60.
    [9] 陈耀华, 陈远笛. 论国家公园生态观——以美国国家公园为例. 中国园林, 2016, 32(3): 57-61.
    [10] 吴丹, 邵全琴, 刘纪远, 曹巍. 三江源地区林草生态系统水源涵养服务评估. 水土保持通报, 2016, 36(3): 206-210.
    [11] 林慧龙, 郑舒婷, 王雪璐. 基于RUSLE模型的三江源高寒草地土壤侵蚀评价. 草业学报, 2017, 26(7): 11-22.
    [12] 梁健超, 丁志锋, 张春兰, 胡慧建, 朵海瑞, 唐虹. 青海三江源国家级自然保护区麦秀分区鸟类多样性空间格局及热点区域研究. 生物多样性, 2017, 25(3): 294-303.
    [13] Liu X F, Zhang J S, Zhu X F, Pan Y Z, Liu Y X, Zhang D H, Lin Z H. Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000-2011. Journal of Geographical Sciences, 2014, 24(2): 288-302.
    [14] 孙发平, 曾贤刚. 中国三江源区生态价值及补偿机制研究. 北京: 中国环境科学出版社, 2008.
    [15] 刘纪远, 邵全琴, 樊江文. 三江源生态工程的生态成效评估与启示. 自然杂志, 2013, 35(1): 40-46.
    [16] Jiang C, Zhang L B. Climate change and its impact on the Eco-environment of the three-rivers headwater region on the Tibetan Plateau, China. International Journal of Environmental Research and Public Health. 2015, 12(10): 12057-12081.
    [17] 陈丹. 台湾国家公园对大陆自然保护区建设管理的启示. 林产工业, 2015, 42(5): 58-60.
    [18] 徐新良, 庞治国, 于信芳. 土地利用/覆被变化时空信息分析方法及应用. 北京: 科学技术文献出版社, 2014.
    [19] 章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究. 地理科学, 2002, 22(6): 705-711.
    [20] Wischmeier W H, Johnson C B, Cross B V. Soil erodibility nomograph for farmland and construction sites. Journal of Soil & Water Conservation, 1971, 26(5): 189-193.
    [21] Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes. Transactions of the ASAE, 1994, 37(6): 1835-1840.
    [22] 蔡崇法, 丁树文, 史志华, 黄丽, 张光远. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究. 水土保持学报, 2000, 14(2): 19-24.
    [23] 彭建, 李丹丹, 张玉清. 基于GIS和RUSLE的滇西北山区土壤侵蚀空间特征分析——以云南省丽江县为例. 山地学报, 2007, 25(5): 548-556.
    [24] 李天宏, 郑丽娜. 基于RUSLE模型的延河流域2001-2010年土壤侵蚀动态变化. 自然资源学报, 2012, 27(7): 1164-1175.
    [25] 孙文义, 邵全琴, 刘纪远. 黄土高原不同生态系统水土保持服务功能评价. 自然资源学报, 2014, 29(3): 365-376.
    [26] 怡凯, 王诗阳, 王雪, 姚洪莉. 基于RUSLE模型的土壤侵蚀时空分异特征分析——以辽宁省朝阳市为例. 地理科学, 2015, 35(3): 365-372.
    [27] 曹巍, 刘璐璐, 吴丹. 三江源区土壤侵蚀变化及驱动因素分析. 草业学报, 2018, 27(6): 10-22.
    [28] Fryrear D W, Krammes C A, Williamson D L, Zobeck T M. Computing the wind erodible fraction of soils. Journal of Soil and Water Conservation, 1994, 49(2): 183-188.
    [29] 黄麟, 曹巍, 吴丹, 巩国丽, 赵国松. 2000—2010年我国重点生态功能区生态系统变化状况. 应用生态学报, 2015, 26(9): 2758-2766.
    [30] 巩国丽. 中国北方土壤风蚀时空变化特征及影响因素分析[D]. 北京: 中国科学院大学, 2014.
    [31] 环境保护部办公厅, 发展改革委办公厅. 生态保护红线划定指南. (2017-05-27). http://mp.ofweek.com/emc/a545663828646.
    [32] Shen M G, Piao S L, Dorji T, Liu Q, Cong N, Chen X Q, An S, Wang S P, Wang T, Zhang G X. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2015, 2(4): 454-467.
    [33] 徐维新, 古松, 苏文将, 江莎, 校瑞香, 肖建设, 张娟. 1971—2010年三江源地区干湿状况变化的空间特征. 干旱区地理, 2012, 35(1): 46-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700