用户名: 密码: 验证码:
多次激光冲击导致的Ti17合金层裂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spall of Ti17 alloy induced by laser shock peening with multiple shots
  • 作者:吴俊峰 ; 邹世坤 ; 张永康 ; 孙桂芳 ; 倪中华 ; 曹子文 ; 车志刚
  • 英文作者:WU Junfeng;ZOU Shikun;ZHANG Yongkang;SUN Guifang;NI Zhonghua;CAO Ziwen;CHE Zhigang;School of Mechanical Engineering,Southeast University;Science and Technology on Power Beam Processes Laboratory,AVIC Manufacturing Technology Institute;School of Electro-mechanical Engineering,Guangdong University of Technology;
  • 关键词:连续多次激光冲击 ; Ti17合金中厚样品 ; 层裂特性 ; 层裂阈值 ; 超声波无损检
  • 英文关键词:laser shock peening;;Ti17 alloy sample;;spall characteristic;;spall threshold;;ultrasonic nonde-structive testing
  • 中文刊名:BZCJ
  • 英文刊名:Explosion and Shock Waves
  • 机构:东南大学机械工程学院;中国航空制造技术研究院高能束流加工技术国家级重点实验室;广东工业大学机电工程学院;
  • 出版日期:2017-11-29 14:33
  • 出版单位:爆炸与冲击
  • 年:2018
  • 期:v.38;No.181
  • 基金:国家重点研发计划项目(2016YFB1102705);; 装备预研教育部联合基金项目(6141A02033103);; 中国博士后科学基金项目(2015M570395,2016T90400);; 江苏省产学研前瞻性联合研究项目(BY2015070-05);; 江苏省博士后基金项目(1501028A);; 江苏省六大人才高峰高层次人才项目(2016-HKHT-001)
  • 语种:中文;
  • 页:BZCJ201805020
  • 页数:8
  • CN:05
  • ISSN:51-1148/O3
  • 分类号:157-164
摘要
为研究激光冲击Ti17合金中厚样品的层裂特性和层裂阈值,对样品(厚5 mm)表面进行单点连续1~8次激光冲击,激光工艺参数为:频率1 Hz,脉宽15 ns,激光能量30 J,方形光斑4 mm×4 mm。采用白光干涉仪、超声波无损检测技术和扫描电镜,分析和检测中厚样品冲击区域的表面形貌、内部损伤以及层裂形貌。实验结果表明,连续从4次到5次激光冲击中厚样品的表面凹坑深度增加值最大为64.5%。连续5次激光冲击为中厚样品层裂阈值,层裂面积随冲击次数增加而增加。连续5~8次激光冲击中厚样品层裂厚度的实验值为280~310μm。层裂机理为韧性微孔洞的形核、增长和汇合,形成晶界失效和晶内失效。研究结果可为激光冲击强化整体叶盘改性提供工艺参考。
        In order to investigate spalling response and the spall threshold of Ti17 alloy under laser shock peening( LSP),the surface of a 5 mm-thick sample was shocked by multiple laser shots with the shot number ranging one to eight shots. The laser employed has a repetition rate of 1 Hz,the pulse width of 15 ns,the pulse energy of 30 J,and the spot size of 4 mm × 4 mm. The surface morphology,the internal damage and the spall morphology after LSP were characterized by non-contact optical profiler,ultrasonic nondestructive testing technique and scanning electron microscope,respectively. The results indicate that the increment of the shot number from four to five results in increasing the depression depth of the surface up to 64. 5%. The spall threshold is reached by LSP with continuous five shots. The spall thickness observed after LSP with five to eight shots ranges from 280 μm to 310 μm. The spall mechanism is due to the nucleation,growth and coalescence of the ductile micro-voids,leading to intragranular failure and transgranular failure. This work may provide valuable information for the optimization of integrated blisk rotators with LSP.
引文
[1]ZHANG Y K,LU J Z,REN X D,et al.Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J].Materials and Design,2009,30(5):1697-1703.DOI:10.1016/j.matdes.2008.07.017.
    [2]PEYRE P,FABBRO R,MERRIEN P,et al.Laser shock processing of aluminium alloys:Application to high cycle fatigue behaviour[J].Materials Science and Engineering:A,1996,210(1/2):102-113.DOI:10.1016/0921-5093(95)10084-9.
    [3]BERGANT Z,TRDAN U,GRUM J.Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J].International Journal of Fatigue,2016,87:444-455.DOI:10.1016/j.ijfatigue.2016.02.027.
    [4]LU J Z,QI H,LUO K Y,et al.Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J].Corrosion Science,2014,80:53-59.DOI:10.1016/j.corsci.2013.11.003.
    [5]LUO K Y,WANG C Y,LI Y M,et al.Effects of laser shock peening and groove spacing on the wear behavior of nonsmooth surface fabricated by laser surface texturing[J].Applied Surface Science,2014,313:600-606.DOI:10.1016/j.apsusc.2014.06.029.
    [6]SPANRAD S,TONG J.Characterization of foreign object damage(FOD)and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J].Procedia Engineering,2011,528(4):2128-2136.DOI:10.1016/j.proeng.2010.03.188.
    [7]罗新民,马辉,张静文,等.激光冲击中的“应变屏蔽”和“约束击穿”[J].材料导报,2010,24(5):11-15.LUO Xinmin,MA Hui,ZHANG Jingwen,et al.“Strain-screening”and“constraint-breakdown”in laser shock processing[J].Materials Review,2010,24(5):11-15.
    [8]LIU Q,DING K,YE L,et al.Spallation-like phenomenon induced by laser shock peening surface treatment on 7050 aluminum alloy[C]∥ATRENS A,BOLAND J N.Structural integrity and fracture:Proceedings of the International Conference,SIF 2004.Brisbane,Australia:School of Mechanical and Mining Engineering Publications,2004:235-240.DOI:10.1142/9789812777973_0024.
    [9]LIU Q,YANG C H,DING K,et al.The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy[J].Fatigue and Fracture of Engineering Materials and Structures,2007,30(11):1110-1124.DOI:10.1111/j.1460-2695.2007.01180.x.
    [10]JARMAKANI H,MADDOX B,WEI C T,et al.Laser shock-induced spalling and fragmentation in vanadium[J].Acta Materialia,2010,58(14):4604-4628.DOI:10.1016/j.actamat.2010.04.027.
    [11]LESCOUTE E,DE RESSEGUIER T,CHEVALIER J M,et al.Ejection of spalled layers from laser shock-loaded metals[J].Journal of Applied Physics,2010,108(9):93510.DOI:10.1063/1.3500317.
    [12]DALTON D A,BREWER J L,BERNSTEIN A C,et al.Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106s-1[J].Journal of Applied Physics,2008,104(1):13526.DOI:10.1063/1.2949276.
    [13]翟少栋,李英华,彭建祥,等.平面碰撞与强激光加载下金属铝的层裂行为[J].爆炸与冲击,2016,36(6):767-773.DOI:10.11883/1001-1455(2016)06-0767-07.ZHAI Shaodong,LI Yinghua,PENG Jianxiang,et al.Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings[J].Explosion and Shock Waves,2016,36(6):767-773.DOI:10.11883/1001-1455(2016)06-0767-07.
    [14]TYLER C,MILLETT J C F,BOURNE N K.Spallation in Ti-6Al-4V:Stress measurements and recovery[J].AIP Conference Proceedings,2006,845(1):674-677.DOI:10.1063/1.2263412.
    [15]BOIDIN X,CHEVRIER P,KLEPACZKO J R,et al.Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy[J].International Journal of Solids and Structures,2006,43(14/15):4595-4615.DOI:10.1016/j.ijsolstr.2005.06.039.
    [16]FABBRO R,FOURNIER J,BALLARD P,et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics,1990,68(2):775-784.DOI:10.1063/1.346783.
    [17]GE M Z,XIANG J Y.Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J].Journal of Alloys and Compounds,2016,680:544-552.DOI:10.1016/j.jallcom.2016.04.179.
    [18]张建泉,陈荣华,强希文,等.激光产生的激波在靶材中的传播及层裂效应[J].中国激光,2002,29(3):197-200.DOI:10.3321/j.issn:0258-7025.2002.03.002.ZHANG Jianquan,CHEN Ronghua,QIANG Xiwen,et al.Propagation and spall effect of shock wave induced by laser in targets[J].Chinese Journal of Lasers,2002,29(3):197-200.DOI:10.3321/j.issn:0258-7025.2002.03.002.
    [19]CELLARD C,RETRAINT D,FRANOIS M,et al.Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J].Materials Science and Engineering:A,2012,532(1):362-372.DOI:10.1016/j.msea.2011.10.104.
    [20]HERASYMCHUK O M,KONONUCHENKO O V,MARKOVSKY P E,et al.Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude[J].International Journal of Fatigue,2016,83:313-322.DOI:10.1016/j.ijfatigue.2015.11.002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700